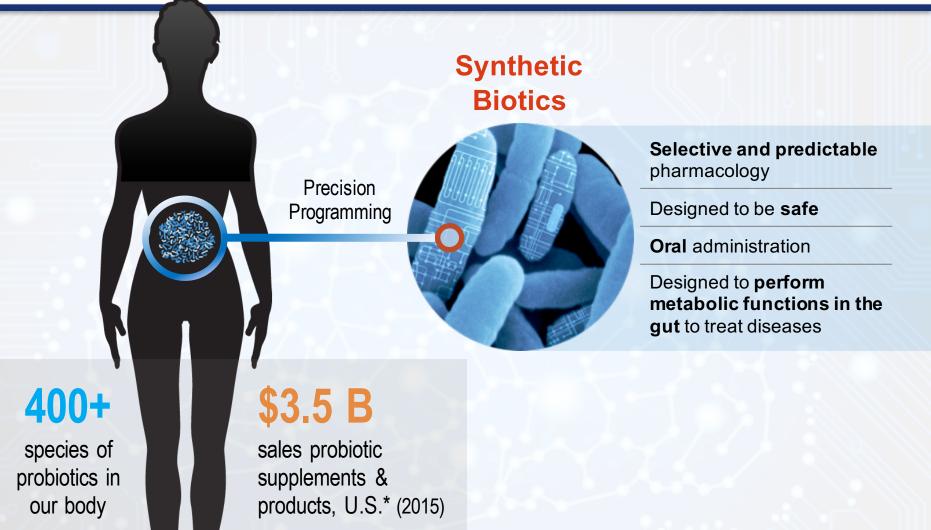
synlogic


Powering the Microbiome

with synthetic biotics to correct metabolic dysregulation throughout the body


Corporate & PKU Overview

February 2016

Corporate History

SYNTHETIC BIOTICS: Precision Programmed Probiotics to Treat Serious Diseases

*Statista 2016

Synthetic Biotics: A New Class of Drugs

Synthetic

- Engineered bacteria
- Genetic circuits that perform
 metabolic transformations
- Designed synthetically to degrade metabolites that induce disease or synthesize substances that can treat disease

Biotics

- Probiotic bacteria: E. coli Nissle
- Derived from natural human microbiome
- Extensive safety in humans as probiotic
- Daily, oral administration

Synthetic Biotics

Therapeutic action from the microbiome to correct metabolic dysregulation throughout the body

Synthetic Biotics: Therapeutics that Operate from our Natural Microbiome

Synlogic's synthetic biotics are oral bacterial drug products that blend with the patient microbiome where they perform their programmed therapeutic metabolic transformations ...

.... to correct metabolite dysregulation that is causing chronic disease throughout the body

Synlogic is at the Convergence of Two Revolutionary Fields in Life Sciences

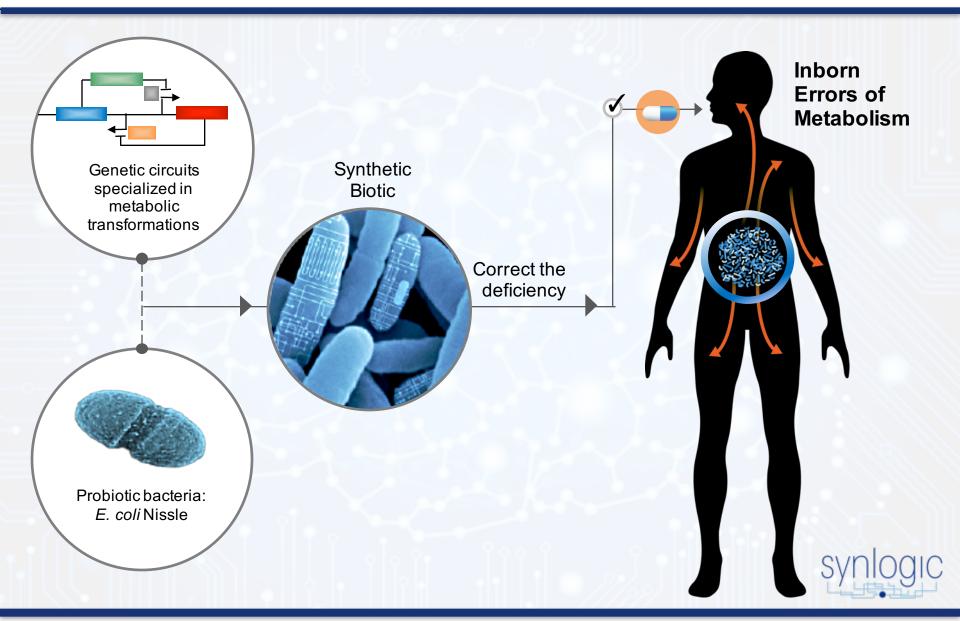
2 Revolutionary Fields

Therapeutic Drug Products

Synthetic Biology

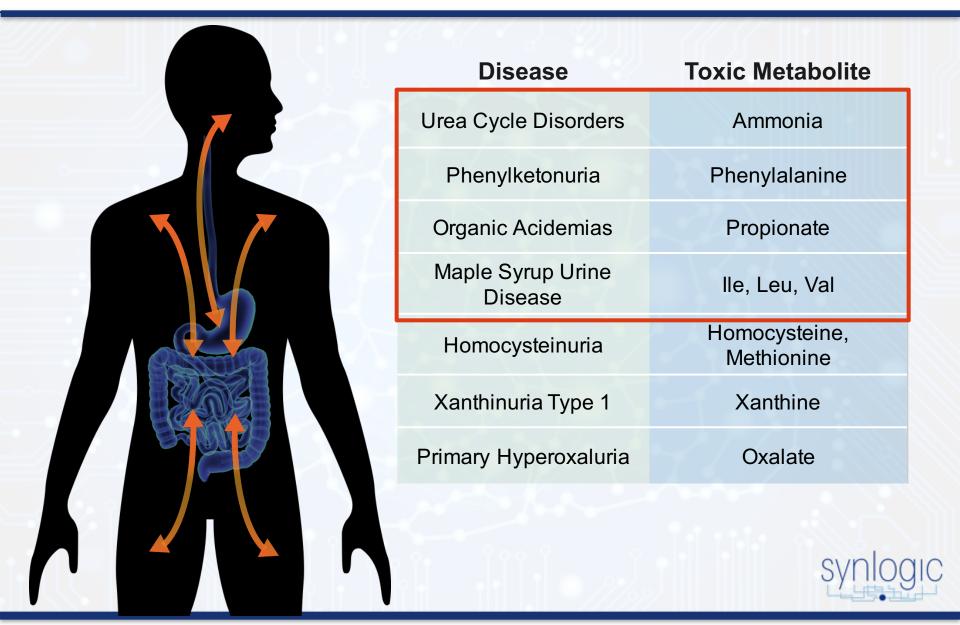
Rare Diseases Microbiome

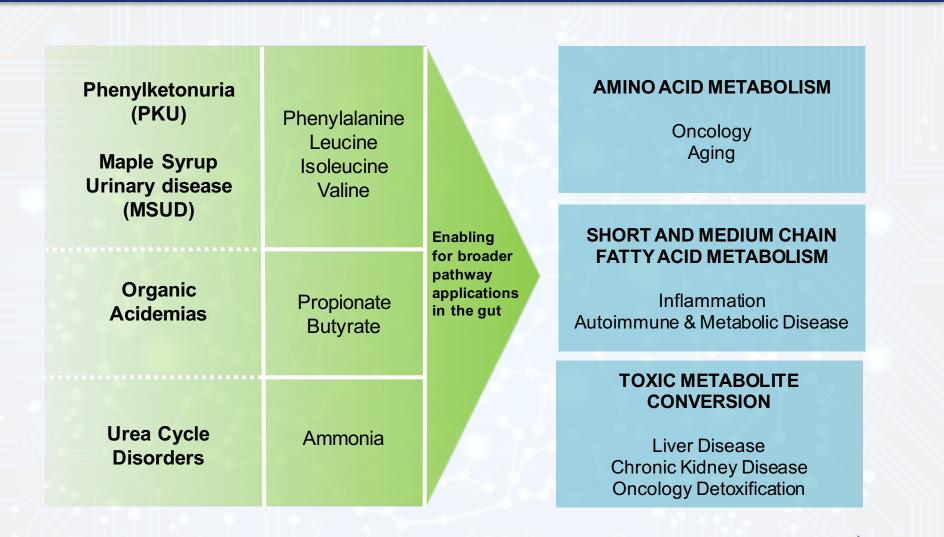
Probiotic


Synthetic Biotics

- Transformative therapies
- · Pipeline of products
- Value Creation in compressed timeline

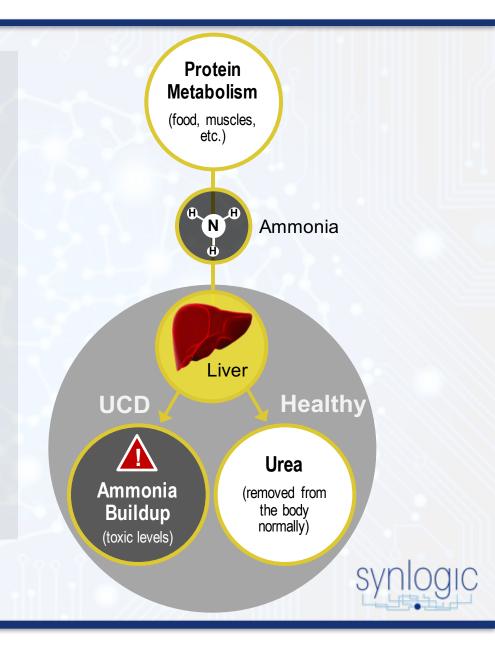

Major Diseases


Synlogic's Drug Discovery and Development Approach

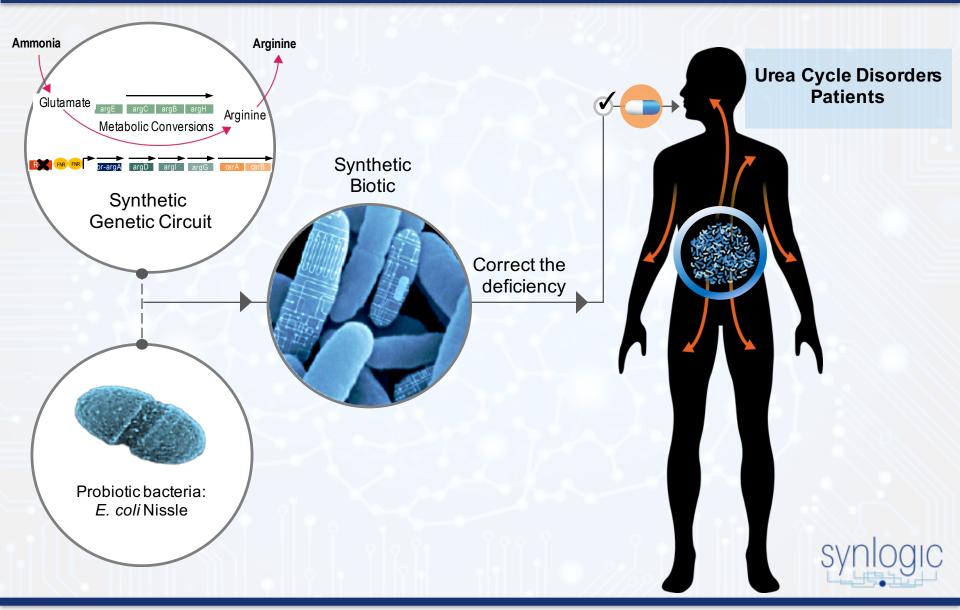

A Simple, Robust and Rapid Platform for Generating Synthetic Biotics

Synlogic's Initial Focus: Inborn Errors of Metabolism

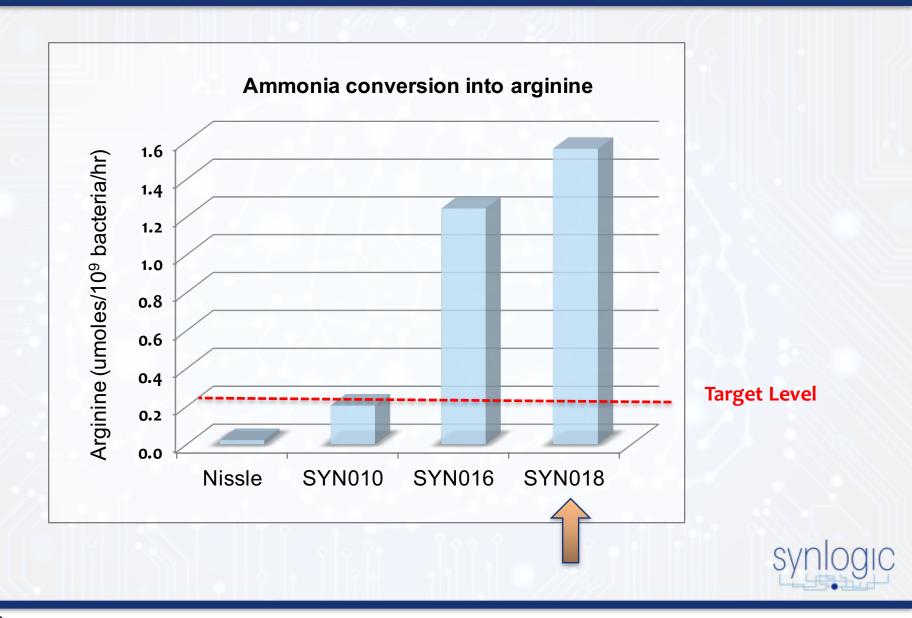
Synthetic Biotics Can Mediate Broad-Range of Metabolite Transformations in the Gut

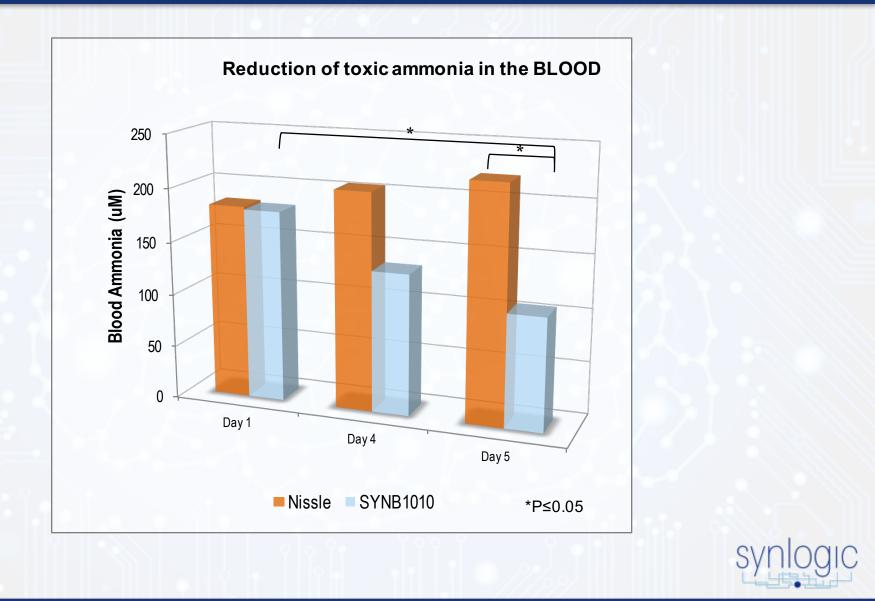

Lead Program I: Urea Cycle Disorders (UCD)

Urea cycle disorders: 2,000-6,000 patients with hereditary disorder (US)

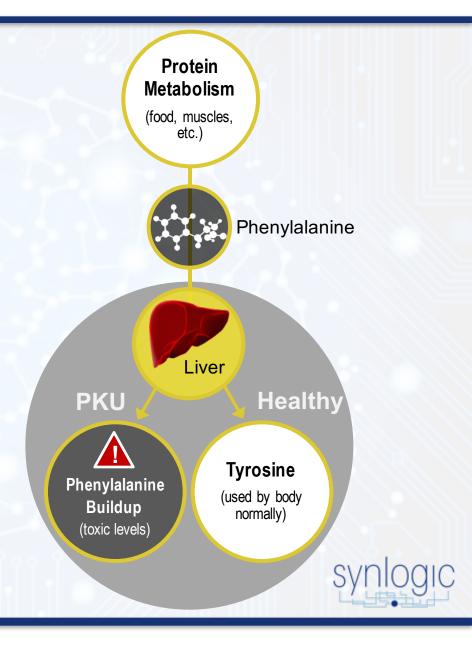

- Genetic defects in Urea Cycle
- Symptoms: vomiting, encephalopathy, respiratory stress, irreversible brain damage, coma and/or death
- Standard of care inadequate best option is liver transplant

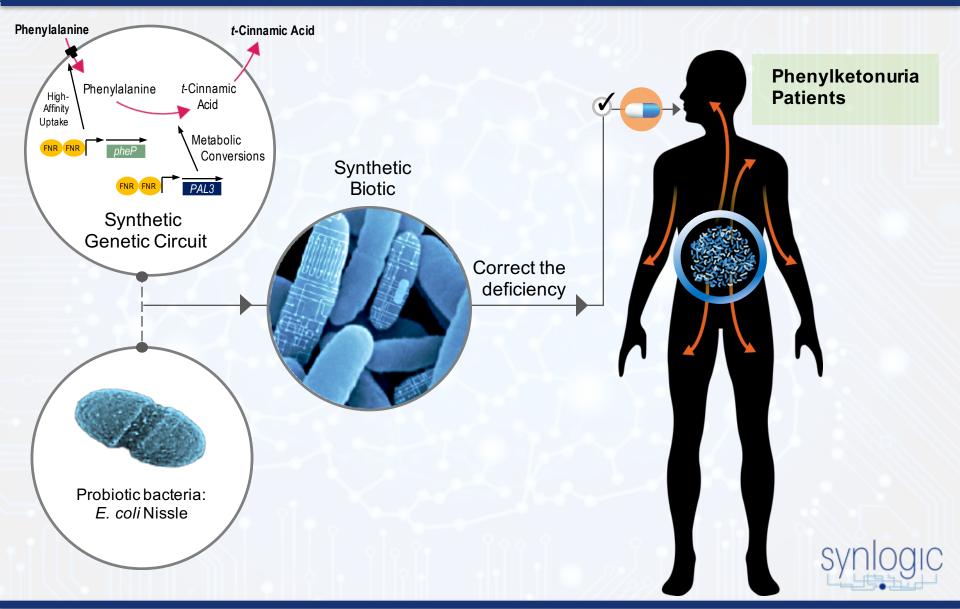
Additional benefit possible for >900,000 hepatic encephalopathy/cirrhosis patients


• Fulminant liver failure, chronic liver failure, cirrhosis, etc.

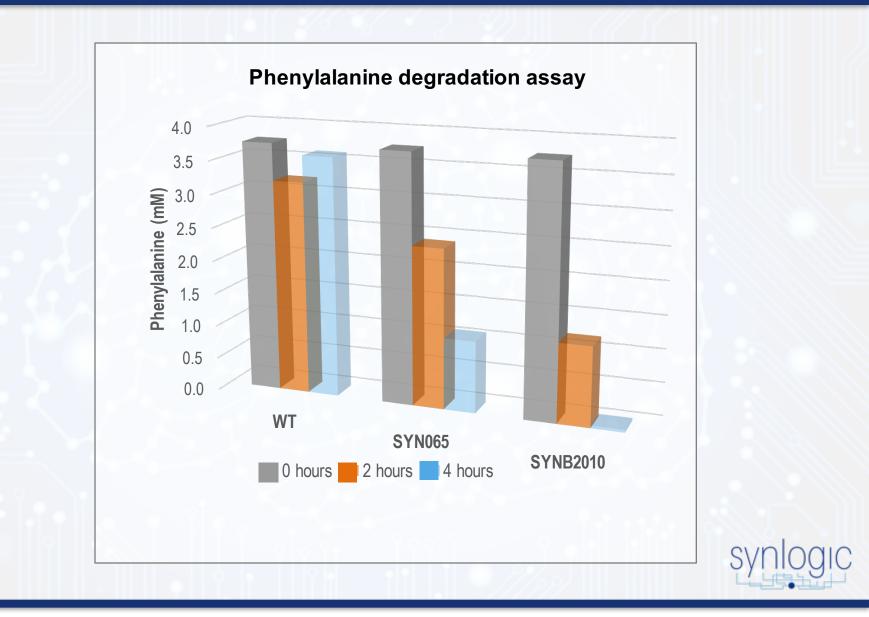

SYNB1010: Conversion of Toxic Ammonia into Beneficial Arginine for the Treatment of UCD

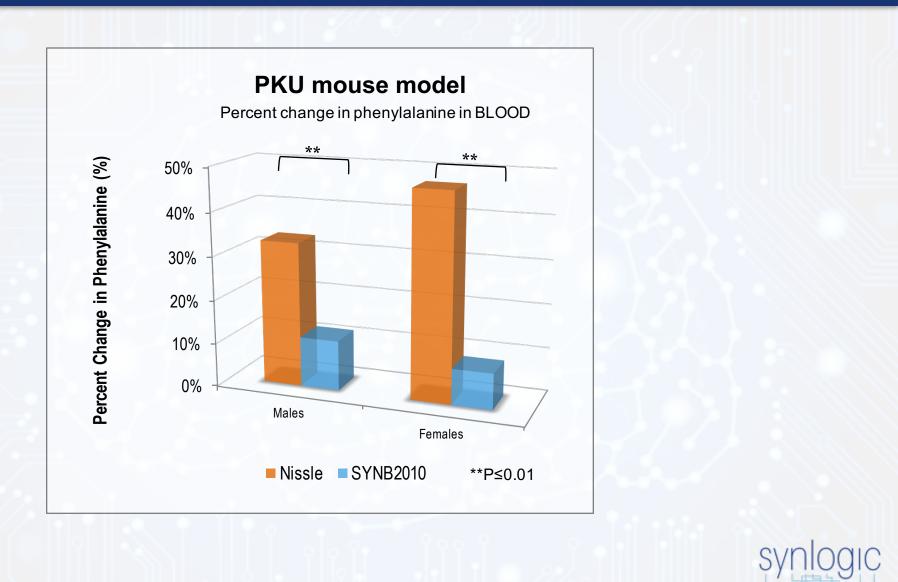
Clinical Candidate Selection: Efficient Ammonia Conversion In Vitro

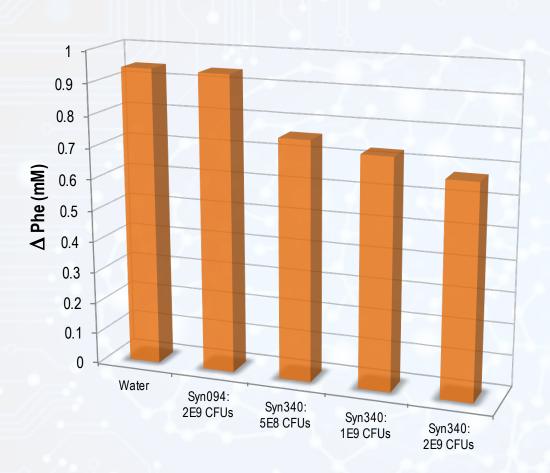

SYNB1010: Efficient Ammonia Conversion *In Vivo* – *Acute* Hepatic Encephalopathy Model


Lead Program II: Phenylketonuria (PKU)

PKU disorders: ~13,000 patients with hereditary disorder (US)


- Genetic defect in phenylalanine hydrolase (PAH) enzyme
- **Symptoms:** mental retardation, convulsions, behavior problems, skin rash, musty body odor
- Standard of care inadequate
- Kids maintained on very low protein diet (NO meat, dairy, dry beans, nuts, eggs)


SYNB2010: Degradation of Toxic Phenylalanine for the Treatment of PKU


Clinical Candidate SYNB2010: Efficient Phenylalanine Degradation *In Vitro*

Clinical Candidate SYNB2010: Efficient Phenylalanine Degradation *In Vivo*

Dose-Dependent Decrease in Systemic Phe Levels by an FNR-inducible PKU Strain

- Mice were administered Phe subcutaneously (0.1mg/g)
- Following Phe treatment, mice were gavaged at 30 and 90 minutes with SYN94 (parental Nissle strain) or SYN340 (Nissle strain carrying loq copy, FNRinducible PAL3 gene as well as an FNR-inducible chromosomal insertion of pheP)
- Mice were bled at time 0 and at 4 hours post-injection
- SYN340 was able to intercept entero-recirculating Phe and thus blunt the increase in blood Phe observed post Phe injection

Experiment is one representative of 8 studies of this design which consistently show a significant effect of SYN340

EDC: PK/PD Profiling of SYN2010

Parameter	Value
Maximum burden of Phe in blood of phenylketonuric patient	5000 µmols total Phe Total blood Phe levels: ∼1000 µM; 5 L blood (adult)
Phenylalanine consumption target: Phe burden	5000 µmol/day
Target phenylalanine consumption rate: Phe burden	5000 µmol/day/10 ¹¹ bacteria
Lab assay target: Phe burden	2.08 µmol/hr/10 ⁹ bacteria
Current phenylalanine consumption rate	4-15 µmol/hr/10º bacteria*
Maximum dietary intake of phenylalanine; in healthy individuals>PKU patients	18000 µmols/day
Phenylalanine consumption target: Phe intake	750 µmols/hr
Target phenylalanine consumption rate: Phe intake	250 µmols/hr/10 ¹¹ X 3 doses
Lab assay target: Phe intake	2.50 µmol/hr/10 ⁹ bacteria

Note: food intake based on recommended adult consumption of 75 g/day. PKU pts are primarily children with restricted protein intake.

Commercial PKU Target Product Profile

BOLD: early development milestones

	Attribute	Sapropterin (Approved; Kuvan™)	PEG-PAL (Phase 3)	SYNB2010 (BASE CASE TARGET)	SYNB2010 (BEST CASE TARGET)
Drug	 Indication Route of admin. Dose range Dose frequency Duration of treatment 	 Hyperphenylalanin emia (BH4 responders only) Oral with food 10-20 mg/kg/day Once daily Chronic; no immunogenicity 	 Hyperphenylalaninemia (likely all genetics) Injectable (self) 20-40 mg/kg/day Once daily Unknown; likely high rate of immunogenicity¹ 	 Hyperphenylalaninemia (no restrictions on genetics) Oral with food 1E9-1E11 bacteria Three times daily Chronic; <10% immunogenicity 	 Hyperphenylalaninemia (no restrictions on genetics) Oral without food 1E7-1E9 bacteria Once daily Chronic; no immunogenicity
Clinical	 Population Responders Restrictions Primary endpnt Secondary endpnt Tertiary endpnt Adverse reactions Contraindications Monitoring 	 >1 month of age <20%; limited mild/mod PKU Adjunctive to Phe- free diet ~29% reduction blood Phe² Phe-free diet required N/A <15% Grade 1 None Monthly blood Phe levels 	 Adults 75-90%1 Adj. to Phe-free diet ~54% reduction blood Phe1 Phe-free diet required Executive function/mood ~80% Grade 1 or higher1 Unknown Frequent blood Phe levels 	 >4 years of age >50% (all genetics & severity) Adjunctive to Phe-free diet >30% reduction blood Phe >20 g/d protein per day Cognitive/mood improvement <20% Grade 1 None Monthly blood Phe levels 	 >1 month of age >90% of all PKU patients None; normal diet >60% reduction blood Phe >70 g/d protein per day Cognitive/mood normal <5% Grade 1 None >3 mo Phe monit. intervals

Source: KOL discussions; company websites;¹Longo, Nicola, et al. "Single-dose, subcutaneous recombinant phenylalanine ammonia lyase conjugated with polyethylene glycol in adult patients with Synlogic analyses; publications phenylketonuria: an open-label, multicentre, phase 1 dose-escalation trial." *The Lancet* 384.9937 (2014): 37-44.

synlogic

²Levy, Harvey L., et al. "Efficacy of sapropterin dihydrochloride (tetrahydrobiopterin, 6R-BH4) for reduction of phenylalanine concentration in patients with phenylketonuria: a phase III randomised placebo-controlled study." The Lancet 370.9586 (2007): 504-510.

Two INDs in Next 4Qs: Four Clinical Programs in 2017

<i></i>	2015	2016			2017				
	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
UCD	Development Candidate	Pre-clinic	al/IND enabl		IND CB, ferment	ation, QC)	Phase	e Ib/IIa	BLA target: 2019
PKU		Development Candidate	Pre-clinica	al/IND enabli CN		IND rmentation, Q	C)	Phase Ib/Ila	BLA target: 2019
Organic Acidemias					Development Candidate		I/IND enabli MCB, ferme	ng studies ntation, QC)	IND
MSUD					Development Candidate		I/IND enabli IC (MCB, fer	ng studies mentation, C	IND C)
				101		ارم ک		C	synlog

Synthetic Biotics Designed to be Safe: Regulatory Strategy

Inherent Safety

- Nissle -background chassis is a naturally occurring probiotic widely used
- Isolated from human microbiome
- Extensive human safety profile
- Genes being refactored are derived from human genome or commensal microorganism
- Transient: non-colonizing probiotic well characterized

Synlogic Strategy:

- Phase 0 Nissle study
- NHP Nissle study
- Nissle bioinformatics for pathogenic genes and prevalence
- Synthetic circuit gene etiology
- Literature curation
- Viability characterization for Synthetic Biotic
 - Time course analysis in vitro
 - Shedding/clearance in vivo
 - Auxotroph challenge (DapA, thyA, etc. single/dual)

Regulatory Standards for Monitoring

- Industry leaders in setting biocontainment criteria
- Highest standard for biocontainment
- Engineered microorganism
- Probiotic
- Focus on level vs mechanism
- Auxotrophy
- Kill Switch

Synlogic Strategy:

- Monitoring Approaches:
 - Single/dual auxotrophy: synthetic amino acid, gene deletions, inducible auxotrophy
- Gene-guard plasmids
- Kill switch: Recombinase-controlled nuclease (toxin/anti-toxin), enhanced sensitivity to antibiotic

CONFIDENTIAL

Leading IP Portfolio: Program-Specific IP Provides Comprehensive and Layered Coverage

Formidable Barrier to Entry

Product Compositions & Indications

CMC & Formulations

Bacterial Chassis

Control and Biocontainment Elements

Defined Synthetic Metabolic Transformation

Key Synlogic Takeaways

Novel Therapeutic Class

- Synthetic Biotics: Leading the convergence of probiotics and synthetic biology to create novel medicines
- Simple, robust and rapid process for the creation of drug candidates

Robust Pipeline with Orphan Drug Programs

- At least Two INDs planned in next 4Qs: UCD and PKU
- Four clinical programs expected in 2017

Partnership with AbbVie

• Inflammatory Bowel Disease (IBD)

Dominant Synthetic Biotics IP Portfolio

Strong Balance Sheet

- 7 Issued/Allowed Patents
- 34 Patent Families
- 100 Pending Patent Applications
- Series A: ~\$30MM
- Series B: ~\$40MM (closing expected in January 2016)
- Seasoned biotech investors: Atlas Venture, NEA, Bill & Melinda Gates Foundation

Investors & Core Advisors

Investors	SynBio Leaders	Therapeutic Experts		
Atlas Venture Peter Barrett Ankit Mahadevia	Jim Collins - Scientific co-founder Termeer Professor of Medical Engineering & Science, MIT, Broad Institute, Wyss Institute	Cammie Lesser Associate Professor of Medicine, MGH		
NEA Ed Mathers	Tim Lu - Scientific co-founder Associate Professor of Biological Engineering, MIT	Wendy Garrett Associate Professor, Harvard School of Public Health, Broad Institute		
The Gates Foundation Charlotte Hubbert	Kristala Prather Associate Professor, MIT	Bill Sandborn Chief, Division of Gastroenterology, Professor of Medicine, UCSD		
	Chris Voigt MIT, Broad Foundry	Brian Feagan Professor of Medicine, Robarts Research Institute, University of Western Ontario		

Synlogic Management Team

Core team has deep domain & early stage company-building experience

• CEO: JC Gutierrez Ramos (Pfizer, GSK, Millennium, Harvard)

• President: Bharatt Chowrira (Auspex, Addex, Nektar, Merck, Sirna)

• COO: Alison Silva (TOG, Marina, Cequent, Pfizer)

CTO: Dean Falb (Stryker, Praecis, Millennium)

• CSO: Paul Miller (AstraZeneca, Pfizer)

- Fr
- CMO: Saurabh Saha (BioMed Valley Discoveries, Novartis Institutes for BioMedical Research)

synlogic

Powering the Microbiome

with synthetic biotics to correct metabolic dysregulation throughout the body

Thank You. www.synlogictx.com