

Reprogramming biological functionalities for autonomous therapeutic cells

Matthew Chang

Department of Biochemistry, Yong Loo Lin School of Medicine NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI) National University of Singapore

http://SynCTI.org/

MICROBIOME DENIZENS OF THE HUMAN BODY AND AFFECTS OUR HEALTH

Reprogramming commensal microbes to function as therapeutic units?

Functional commensal microbes

Responding to disease conditions in an autonomous manner

of Singapore

ANTIBIOTIC RESISTANCE: PROBLEM?

- Most major classes of antibiotics developed in 1940's to 1960's
- Since 1980's, the pharmaceutical industry focusing on chronic diseases that require life-long daily treatment
- Fewer new classes of antibiotics available

POTENTIAL SOLUTIONS?

Develop new classes of antibiotics

Diversify our antimicrobial strategies

- Exploiting synthetic biology approaches?

RESEARCH OBJECTIVE

- Intentional design
 - Programmable behaviors

• Sensing, seeking and killing a target pathogen

DESIGN: INPUT & OUTPUT

QUORUM SENSING (QS) & BACTERIOCINS

QS molecules

- Intercellular communication
- Transition between cellular lifestyle

DO WE HAVE A QUORUM TO DO QUORUM SENSING

MEETINGS IN THE

MICROBIAL WORLD · summer to commercial

Bacteriocins

Translocation Receptor binding Killing N-terminus C-terminus

(B) Secondary structure

FEBS Lett (2010); BBRC (2010); Chem Eng Sci (2013); ChemBioChem (2013)

Pathogen-killing microbes Prototype

Hwang et al. ACS Syn Biol, 2014 Rasouliha et. ChemBioChem, 2013 Saeidi et al. Mol Sys Biol, 2011 Ling et al. FEBS Lett, 2010

How our synthetic microbes work..

Courtesy of West German Broadcasting (WDR)

http://www.wdr.de/tv/quarks/sendungsbeitraege/2011/1213/008_bakterien_2.jsp

Hwang et al. ACS Syn Biol, 2014 Rasouliha et. ChemBioChem, 2013 Saeidi et al. Mol Sys Biol, 2011 Ling et al. FEBS Lett, 2010

© Copyright National University of Singapore. All Rights Reserved.

PATHOGEN-KILLING MICROBES PROTOTYPES - STILL EVOLVING

- Targeted killing, minimizing negative effects on the microbiome
- Preventive effects

Biofilm inhibition: 90%

• Molecular Systems Biology (2011), Featured in Reuters, Nature, Science, etc.

Cell Viability (cfu/ml)

System optimization

PATHOGEN-KILLING MICROBES PROTOTYPES - STILL EVOLVING

Biofilm degradation and cell killing by secreted Dnasel (\bigcirc) an Microcin S (\bigcirc)

- 1. Sensitivity and robust expression
- 2. Target localization (motility)
- 3. Improved killing efficiency
 - ACS Synthetic Biology (2014), Featured in The Economist, Nature News, etc.

Advanced therapeutic functionalities

Programmed motility towards a target pathogen

secreted Dnasel (•) an Microcin S (•)

ACS Synthetic Biology (2014), Featured in The Economist, Nature News, etc.

PREVENTION OF INFECTION STRATEGIES

Enzymatic dispersal of mature biofilm

ACS Syn Biol (2014)

DELIVERY STRATEGIES

Targeted killing by protein secretion

ACS Syn Biol (2014)

CELLULAR DRUG DELIVERY STRATEGIES

Motility via chemotaxis pathway

FULLY FUNCTIONAL MODEL PROGRAMMED MOTILITY-DRIVEN KILLING

Reprogramed E. coli (+ killer enzymes) *swims* towards target cells

Viable PAO1 cells (CFU)

140

ACS Syn Biol (2014)

TEST MODELS

NUS National University of Singapore

Killing effects in eukaryotic models (Mus musculus)

P.aeruginosa infection **Treatment** gut colonization Intestine 5 P. aeruginosa (log CFU/g) 4 3 2 Programmed 1 therapeutic cells 0 infection 0 2 4 6 Time (day) Fecal 5 P. aeruginosa (log CFU/g) 4 Antibiotic 3 treatment 2 0 0 2 8 4 6 10 Time (days)

ALL-IN-A-PAGE

What we have learned so far and what will come

