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Course Overview

In the first part of the course you have been shown the theory behind the
use of various tools in multivariable robust control; in this part of the course
we shall study the algorithms that lie behind these tools. We shall consider:

1. Optimal Control with complete information

– accurate models and full state feedback.

2. Optimal Control with imperfect observations

– (but still with accurate models).

3. Feedback system design, with inaccurate models and imperfect
observations.

Salutary warning: “optimisation can expose the weaknesses in thinking
which are usually compensated for by soundness of intuition”
(Whittle)
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1.1 Notation

• R
n denotes the n-dimensional Euclidean space. This is a vector space

(also known as a linear space). If n = 1, we will drop the subscript and
write just R (the set of real numbers or “the real line”).

• x ∈ A is a shorthand for “x belongs to a set A”, e.g. x ∈ R
n means that

x is an n-dimensional vector.

• If a, b ∈ R with a ≤ b, [a, b] will denote the closed interval from a to b,
i.e. the set of all real numbers x such that a ≤ x ≤ b.

• I will make no distinction between vectors and real numbers in the
notation (no arrows over the letters, bold fond, etc.). Both vectors and
real numbers will be denoted by lower case letters, e.g. x ∈ R

n or y ∈ R.

• Matrices will be denoted by upper case letters, e.g. A ∈ R
n×m is an

matrix with real entries, n rows and m columns.

• A ∈ R
n×n is called symmetric if AT = A (it remains the same if we

interchange rows and columns. Symmetric matrices have real eigenvalues.
A symmetric matrix A ∈ R

n×n is called positive definite (denoted as
A > 0) if xT Ax > 0 for all x 6= 0. This is equivalent to all the
eigenvalues of A being greater than zero. In particular it implies that A−1

exists. A is called positive semi-definite (denoted as A ≥ 0) if
xT Ax ≥ 0 for all x.

• f(·) : A → B is a shorthand for a function mapping every element x ∈ A

to an element f(x) ∈ B. Likewise, f(·, ·) : A × B → C is a function that
takes an element of a ∈ A and an element b ∈ B and produces an
element f(a, b) ∈ C.
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1.2. DISCRETE-TIME OPTIMAL CONTROL 4

1.2 Discrete-time optimal control

(an introduction to the use of Dynamic Programming)

States and Inputs: x ∈ X, u ∈ U (e.g. X = R
n, U = R

m).

Dynamics:

xk+1 = f(xk, uk)

x0 given







discrete-time state-space system

f(·, ·) : X × U → X

e.g.

Trajectory: Given x0, each input sequence u0, u1, . . . , uh−1 generates a
state sequence x0, x1, . . . , xh starting at x0 and such that
xk+1 = f(xk, uk) for k = 0, 1, . . . , h − 1.

Finite Horizon Cost Function:

J( x0
︸︷︷︸

, u0, u1, . . . , uh−1
︸ ︷︷ ︸

) =
h−1∑

k=0

c(xk, uk)
︸ ︷︷ ︸

+
︷ ︸︸ ︷

Jh(xh)

Objective: Find the “best” input sequence u∗0, u
∗
1, . . . , u

∗
h−1,

J∗(x0) = J(x0, u
∗
0, u

∗
1, . . . , u

∗
h−1)

= min
u0,u1,...,uh−1

J(x0, u0, . . . , uh−1)

Technical Assumptions: Omitted here, but necessary because

• J∗ may not be well defined.

• u∗0, u∗1, . . . , u∗h−1 may not exist, or may be non-unique.
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1.2. DISCRETE-TIME OPTIMAL CONTROL 5

Solution: Define a function V (·, ·) : X × {0, . . . , h} → R by

V (x, k) := min
uk,...,uh−1





h−1∑

i=k

c(xi, ui) + Jh(xh)





where xk, xk+1, . . . , xh is the sequence of states generated by
uk, uk+1, . . . , uh−1 starting with xk = x. V (x, k) is known as the value

function or cost to go. It is the optimal additional cost from the kth step
on, if the state at the kth step is equal to x.

Clearly







V (x, h) = Jh(x), final cost

V (x, 0) = J∗(x), optimal cost of original

problem, x0 = x

In fact, it is possible to work backwards and compute V (x, h − 1) in terms
of V (x, h) and then V (x, h − 2) in terms of V (x, h − 1) etc, until we get
back to V (x, 0). The usual derivation relies on the principle of optimality:

Assume that the optimal controls u∗0, u∗1, . . ., u∗h−1 lead us
from x0 to xk at step k. Then the truncated sequence u∗k, . . . ,
u∗h−1 is a solution for the truncated problem

min
uk,uk+1,...,uh−1





h−1∑

i=k

c(xi, ui) + Jh(xh)





(but we shall use simple algebra for the derivation)
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1.2. DISCRETE-TIME OPTIMAL CONTROL 6

Assume we know V (x, k + 1) for all x. Try to compute V (x, k).

V (x, k) = min
uk,uk+1,...,uh−1

(h−1∑

i=k

c(xi, ui) + Jh(xh)
)

= min
uk,uk+1,...,uh−1

(

c(xk, uk) +
h−1∑

i=k+1

c(xi, ui) + Jh(xh)
)

= min
uk

(
min

uk+1,...,uh−1

(

c(x, uk) +
h−1∑

i=k+1

c(xi, ui) + Jh(xh)
))

= min
uk

(

c(x, uk) + min
uk+1,...,uh−1

(
h−1∑

i=k+1

c(xi, ui) + Jh(xh)
))

= min
uk

(

c(x, uk) + V (xk+1, k + 1)
)

= min
uk

(

c(x, uk) + V
(
f(x, uk), k + 1

))

Recursion, expressing V (x, k) in terms of V (x, k + 1).
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1.2. DISCRETE-TIME OPTIMAL CONTROL 7

Summary: We can find the optimal cost and the optimal control
simultaneously, by solving the Dynamic Programming equation

V (x, k) = min
u

(

c(x, u) + V
(
f(x, u), k + 1

))

,

k = h − 1, h − 2, . . . , 1, 0 (1.1)

with the final (or terminal) condition

V (x, h) = Jh(x)

The optimal cost is then given by

J∗(x0) = min
u0,u1,...,uh−1

J(x0, u0, u1, . . . , uh−1) = V (x0, 0).

The optimal input uk at each step is the value which minimises (1.1) for
the current value of the state xk. If we define

g(x, k) = arg min
u

(

c(x, u) + V
(
f(x, u), k + 1

))

then the optimal control is given by

u∗k = g(xk, k), k = 0, 1, . . . , h − 1

Notes:

• arg min denotes the value which achieves the minimum.

• Backwards recursion in h. To solve it, we first find V (x, h − 1) using
V (x, h) (by solving the optimisation problem (1.1) for each x), then
we find V (x, h− 2) using V (x, h− 1) etc, all the way back to V (x, 0).

• Have converted minimisation over a sequence of h inputs to a
sequence of h minimisations over 1 input (but over all states).

• Optimal controls are given by time varying state feedback.

• Solution has been computed for ALL x0.
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1.2. DISCRETE-TIME OPTIMAL CONTROL 8

Dynamic programming provides a systematic procedure for approaching
optimal control problems. Whether or not the procedure can be
implemented in practice (say on a computer) depends on whether or not the
optimisation problem defined by (1.1) can be solved for all x.

For certain classes of systems the problem can always be solved. For
example, if the state and input can only take a finite number of values the
optimisation can be performed by enumeration.

Example: Let U = {1, 2, 3}, X = {1, 2, 3} and

xk+1 = uk

c(x, u) = Cxu

Jh(x) = x2

h = 5;

where

Cxu =

u

x
1 2 3

1 4 2 5
2 4 5 3
3 4 2 1
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1.3 Dynamic programming with

disturbances

Dynamics:
xk+1 = f(xk, uk, wk)

x0 given

Finite Horizon Cost Function:

J(x0, {u}, {w}) =
h−1∑

k=0

c(xk, uk, wk) + Jh(xh)

1.3.1 Stochastic Disturbances

If the wk are random variables, then we can minimise the expected cost:

J∗(x0) = min
u0

Ew0 min
u1

Ew1 · · · min
uh−1

Ewh−1
J(x0, {u}, {w})

Dynamic programming equation becomes

V (x, k) = min
u

Ew

(

c(x, u, w) + V
(
f(x, u, w), k + 1

))

where

V (x, k) = min
uk

Ewk
· · · min

uh−1
Ewh−1

h−1∑

i=k

c(xi, ui, wi) + Jh(xh)
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1.3.2 Worst case disturbances

(2 Player noncooperative dynamic game)
We can also minimise the worst case cost:

J∗(x0) = min
u0

max
w0

min
u1

max
w1

· · · min
uh−1

max
wh−1

J(x0, {u}, {w})

Dynamic programming equation becomes

V (x, k) = min
u

max
w

(

c(x, u, w) + V
(
f(x, u, w), k + 1

))

where

V (x, k) = min
uk

max
wk

· · · min
uh−1

max
wh−1

h−1∑

i=k

c(xi, ui, wi) + Jh(xh)

Can solve a wide variety of problems exactly using these techniques (e.g.
shortest path problems, optimal scheduling ... )
In addition, most optimal control problems (for example, with xk and uk

real vectors) can be approximated arbitrarily closely by “discrete” problems,
and therefore solved by enumeration. The computation is likely to be
horrendous! Fortunately, for certain classes of plants and cost functions we
might expect to do rather better (obtain an analytical solution).
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1.4 Linear Quadratic Regulator

States and Inputs: x ∈ X = R
n, u ∈ U = R

m.

Dynamics:
xk+1 = Axk + Buk

x0 given

Cost Function:

J(x0, u0, u1, . . . , uh−1) =
h−1∑

k=0

(

xT
k Qxk + uT

k Ruk

)

+ xT
h Xhxh

Q, R, Xh are symmetric matrices, with Q ≥ 0, R > 0 and Xh ≥ 0
(recall that R > 0 means that uT Ru > 0 for all u 6= 0, and also implies
that R−1 exists).

Solution: In this case, we can solve the minimisation involved in the
Dynamic Programming equation explicitly. We first need a Lemma on the
minimisation of quadratic forms.

Lemma 1: [Minimisation of Quadratic Forms.]

Given symmetric matrices Q, R, with R > 0, then

min
u

︷ ︸︸ ︷[

xT uT
][

Q ST

S R

][
x

u

]

= xT (Q − ST R−1S)x

and the minimum is achieved at

u = −R−1Sx

Engineering: Part IIB/EIST Part II.
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proof:[

xT uT
][

Q ST

S R

][
x

u

]
=

The Dynamic Programming equation (1.1) in this case becomes,

V (x, k) = min
u

(

xT Qx + uT Ru
︸ ︷︷ ︸

+V (
︷ ︸︸ ︷

Ax + Bu, k + 1)
)

So,

V (x, h − 1)

= min
u

(

xT Qx + uT Ru +
︷ ︸︸ ︷

(Ax + Bu)T Xh(Ax + Bu)
)

= min
u

[

xT uT
][

Q + AT XhA AT XhB

BT XhA R + BT XhB

][
x

u

]

= xT (Q + AT XhA − AT XhB(R + BT XhB)−1BT XhA)
︸ ︷︷ ︸

x

– another quadratic form in x

Engineering: Part IIB/EIST Part II.
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1.4. LINEAR QUADRATIC REGULATOR 14

i.e.

V (x, h) = xT Xhx

V (x, h − 1) = xT Xh−1x,

V (x, h − 2) = xT Xh−2x,

...

V (x, 0) = xT X0x,

A tedious calculation shows that, in fact, Xk ≥ 0, k = h, h − 1, . . . , 0.

Summary: To solve the Linear Quadratic Regulator problem solve the
backwards difference equation

Xk−1 = Q + AT XkA − AT XkB(R + BT XkB)−1BT XkA.

The optimal cost is then
xT

0 X0x0,

and is achieved by the optimal state-feedback control

uk = −(R + BT Xk+1B)−1BT Xk+1Axk

Engineering: Part IIB/EIST Part II.
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1.5 Continuous-Time Dynamic

Programming

States and Inputs: x ∈ R
n, u ∈ U ⊆ R

m.

Dynamics:

ẋ = f(x, u),

x(0) = x0 given







continuous-time state-space system

f(·, ·) : R
n × U → R

n

e.g.

Trajectory: Given x0 ∈ X and a horizon T ≥ 0, each input function
u(·) : [0, T ] → U generates a state trajectory x(·) : [0, T ] → R

n such that
x(0) = x0 and ∀t ∈ [0, T ] : ẋ(t) = f(x(t), u(t)).

Cost Function:

J(x0, u(·)) =

∫ T

0
c(x(t), u(t))dt + JT (x(T ))

Objective: Find the “best” input function u∗(·) : [0, T ] → U ,

J∗(x0) = J(x0, u
∗(·)) = min

u(·)
J(x0, u(·))

Technical Assumptions: on f , U , c, Jh needed.

• Does a unique trajectory x(·) : [0, T ] → R
n exist?

• Does J∗ exist?

• Does u∗(·) : [0, T ] → U exist?

Engineering: Part IIB/EIST Part II.
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Derivation: Approximate the continuous dynamics by a discrete-time
system obtained by sampling every h “time units”. The plant equation
implies that

x(t + h) = x(t) + f(x(t), u(t))h + O(h2)

and the incremental cost accumulated between t and t + h is

∫ t+h

t
c(x(τ), u(τ)) dτ = c(x(t), u(t))h + O(h2).

So, the Dynamic Programming equation (1.1) becomes

V (x, t) = min
u∈U

(c(x, u)h + V (x + f(x, u)h, t + h)) + O(h2)

with V (x, T ) = JT (x).

Consider the Taylor series expansion

V (x + δx, t + δt) = V (x, t) +
∂V

∂x
δx +

∂V

∂t
δt + higher order terms

Engineering: Part IIB/EIST Part II.
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Recall that
∂V

∂x
:=

[
∂V

∂x1

∂V

∂x2

∂V

∂x3
· · ·

∂V

∂xn

]

︸ ︷︷ ︸

where

x =








x1
x2
...

xn








Substituting into the Dynamic Programming equation we get

V (x, t) = min
u∈U

(

c(x, u)h + V (x, t) +
∂V (x, t)

∂x
f(x, u)h

+
∂V (x, t)

∂t
h

)

+ O(h2)

Since V (x, t) and
∂V (x,t)

∂t
do not depend on u,

−
∂V (x, t)

∂t
= min

u∈U

(

c(x, u) +
∂V (x, t)

∂x
f(x, u)

)

+
O(h2)

h

Take limit as h → 0. Recall that limh→0
O(h2)

h
= 0.
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Summary: To find V (·, ·) : R
n × [0, T ] → R solve the PDE

−
∂V (x, t)

∂t
= min

u∈U

(

c(x, u) +
∂V (x, t)

∂x
f(x, u)

)

(1.2)

with boundary condition

V (x, T ) = JT (x).

The optimal cost is then given by V (x0, 0), and the optimal input by

u∗(t) = g(x(t), t)

where

g(x, t) = arg min
u∈U

(

c(x, u) +
∂V (x, t)

∂x
f(x, u)

)

Notes:

• Equation (1.2) is known as the Hamilton-Jacobi-Bellman PDE. It is
the infinitesimal version of (1.1).

• Have turned optimisation over u(·) as a function of time to pointwise
optimisation over u ∈ U (and for all x).

• Optimal control in time varying state feedback form.

• To solve the problem one needs to solve a partial differential equation.
Technical difficulties: does a solution exist? In what sense? Can it be
computed?

• For certain classes of systems many of these technicalities are easily
resolved.
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1.6 Continuous-Time Linear Quadratic

Regulator

States and Inputs: x ∈ R
n, u ∈ R

m

Plant:
ẋ = Ax + Bu,

x(0) = x0

Cost Function:

J (x0, u(·)) =

∫ T

0
c(x, u) dt + JT (x(T ))

where
c(x, u) = xT Qx + uT Ru, JT (x) = xT XT x

R = RT > 0, Q = QT ≥ 0, XT = XT
T ≥ 0

Solution: (summary) Solve the ODE (Riccati equation)

−Ẋ = Q + XA + AT X − XBR−1BT X

(backwards in time) with terminal condition

X(T ) = XT .

The optimal cost is then given by

xT
0 X(0)x0

and the optimal input is given by

u(t) = −R−1BT X(t)x(t).

Derivation:
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LQR Example

G(s) =
s − 1

(s − 2)(s + 2)

with a state-space realization:

A =

[
0 1
4 0

]

, B =

[
1
−1

]

C =
[
1 0

]
, D = 0

and initial condition

x(0) =

[
1
1

]

Cost Function:

∫ T

0

(
y(t)T y(t) + u(t)T u(t)

)
dt + x(T )T XT x(T )

with T = 4

So,
Q = CT C, R = 1

1. XT =

[
30 0
0 30

]

→ X(0) =

[
16.6176 8.3725
8.3725 4.2804

]

Optimal Cost=37.6430

2. XT =

[
0 0
0 0

]

→ X(0) =

[
16.6140 8.3706
8.3706 4.2793

]

Optimal Cost=37.6245
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