
arterial network

Assume that the arterial network is made up of N
vessels, with N = 0 as the root and k ∈ N terminal
vessels.

Define the instantaneous average pressure in vessel
n as the spatial average pressure

Pn =
1

Ln

∫ Ln

0
P(x , t)dx

where x = 0 is the origin of the vessel and x = Ln

is its outlet.

Assume that flow out of the terminal vessels is
governed by a resistive law

Qk =
Pn − P∞

Rk

where Rk is the resistance to outflow into through
the microcirculation and P∞ is the pressure at
which flow through the artery is zero. P∞ may be
different from the venous pressure due to waterfall
effects.

I there are N connected
arteries

I n = 0 is the aortic root

I there are K ∈ N terminal
arteries



conservation of mass

Overall conservation of mass in the arterial network requires

dV

dt
= Qin − Qout

where V is the volume of the arterial system, Qin = Q0 is the flow into the aortic root
from the ventricle and

Qout =
∑
n∈K

Pn − P∞

Rk

is the net flow out of the arteries through the microcirculation.

We assume that the compliance of each artery, Cn = dVn
dPn

is constant. With this

assumption, the conservation of mass equation can be written∑
n∈N

Cn
dPn

dt
+
∑
n∈K

Pn − P∞

Rk
= Q0

This equation relates the average pressures in the different arteries to the flow from
the ventricle and will be the basis of the analysis that follows.



Windkessel pressure

The classical Windkessel solution, originally derived by Frank in 1899, follows from
this equation. Assume that the Windkessel pressure is a function of time that is
uniform throughout the arterial system, Pn = PWk (t). Substituting in the mass
conservation equation

C
dPWk

dt
+

PWk − P∞

R
= Q0

where

C =
∑
n∈N

Cn and
1

R
=
∑
n∈K

1

Rk

are the net compliance and resistance of the arterial system. This is a simple ODE
with the general solution

PWk − P∞ =
e−t/RC

C

∫ t

0
Q0(γ)eγ/RCdγ + (PWk (0)− P∞)e−t/RC

where PWk (0) is the pressure at t = 0, which is taken as the time of the end of
diastole and the start of systole.

Note that during diastole when Q0 = 0, the Windkessel pressure decreases
exponentially with the time constant τ = RC .



reservoir pressure

We now define the reservoir pressure, P̄ as the pressure which satisfies the mass
conservation equation and which has a waveform that is uniform throughout the
arterial system, but is delayed in vessels n by a delay time τn which depends on the
time it takes for a wave to travel from the aortic root to vessel n

P̄n(t) = P̄(t − τn)

Substituting this definition into the mass conservation equation we obtain the defining
equation for P̄

∑
n∈N

Cn
dP̄(t − τn)

dt
+
∑
n∈K

P̄(t − τn)− P∞

Rk
= Q0(t)

This is a time-delay, differential equation with constant coefficients. This type of
equation has been studied extensively in the context of control theory. Although there
are no general methods of solution for equations of this type existence and uniqueness
theorems exist that prove that there is a solution and that the solution is unique.

In the analysis that follows, we only require that the reservoir pressure exists and that
it is unique. Given the reservoir pressure, we define the excess pressure, pn(t), to be
the difference between the measured pressure and the reservoir pressure

pn(t) = Pn(t)− P̄(t − τn)



ventricular work

The hydraulic work done by the ventricle over a cardiac period T is

W =

∫ T

0
P0Q0dt

where we again define t = 0 to the time of end diastole and start of systole. From the
previous definition of reservoir and excess pressures, we can divide the hydraulic work
into reservoir work and excess work

W =

∫ T

0
P̄Q0dt +

∫ T

0
p0Q0dt ≡ W̄ + w

where we assume that the time delay in the aortic root is zero.

The bulk of the following analysis is directed at finding the minimum possible excess
work w using the calculus of variations.



minimum excess work

We apply the arguments of the calculus of variations to find the functional form of the
excess pressure that minimises the ventricular excess work under appropriate
constraints. The constraints are necessary to find non-trivial results from the analysis,
since p0 = 0 is obviously gives the minimum possible excess work. The constraints
that we chose are that p0 is integrable, is periodic with period T and that it satisfies
the equation for mass conservation. We therefore seek the minimum of the function

χ =

∫ T

0
(poQ0 + λp0)dt

where λ is a Lagrange multiplier that will be determined by using the assumption of
periodicity.

Following the standard methods of the calculus of variations, we assume that χ is
minimum when pn − p̂n and find this minimising function by considering all functions
close to p̂n. In particular, we consider the functions pn = p̂n + εη, where ε is a small
constant and η is an arbitrary function with η(0) = η(T ). This final condition follows
from our assumption that the cardiac cycle is periodic with period T .

The minimum is found by setting the derivative of χ with respect to the parameter ε
equal to zero

0 =
∂χ

∂ε
=

∂

∂ε

(∫ T

0
p0Q0dt + λ

∫ T

0
p0dt

)



minimum excess work (2)

The evaluation of this equation depends on our assumption that the mass
conservation equation is satisfied. Substituting the definitions of P̄ and pn into the
mass conservation equation we see that the derivative of Q0 wrt to ε is

∂Q0

∂ε
=

∂

∂ε

(
N∑

n=1

Cn
d(P̄(t − τn) + p̂n + εη)

dt
+

K∑
k=1

(P̄(t − τk ) +−P∞ + p̂k + εη)

Rk

)

= C
dη

dt
+
η

R

where we have used the previously definitions for C and R. Similarly, the derivative of
p0 wrt to ε is

∂p0

∂ε
= η

Substituting into the integral expression we obtain

0 =
∂χ

∂ε
=

∫ T

0

[
Q0η + p̂0

(
C

dη

dt
+
η

R

)
+ λη

]
dt

where we have neglected terms of O(ε).



minimum excess work (3)

The term involving the time derivative of η can be rewritten using integration by parts∫ T

0
p̂0C

dη

dt
dt =

[
p̂0Cη

]T
0
−
∫ T

0

dp̂0

dt
Cηdt

We observe that the first term on the rhs is zero because of the assumption that
η(0) = η(T ). Thus, the full integral can be written

0 =

∫ T

0

[
Qo − C

dp̂0

dt
+

p̂0

R
+ λ

]
ηdt

Since η is an arbitrary function, the terms within the brackets must be equal to zero,
so that the minimising p̂0 satisfies the equation

dp̂0

dt
−

p̂0

RC
=

Q0 + λ

C

where R and C , defined previously, are the net compliance of the arterial system and
the net resistance of the microcirculation. This equation can be solved by quadrature
using the integration factor e−t/RC . Using the initial condition p0(0) = 0, the solution
can be written

p̂0 =
et/RC

C

∫ t

0
Q0(γ)e−γ/RCdγ + λR

(
et/RC − 1

)



minimum excess work (4)

The Lagrange multiplier λ can now be evaluated using the periodicity condition
p̂0(T ) = p̂0(0) = 0,

λ =
−eT/RC

RC
(
eT/RC − 1

) ∫ T

0
Q0(γ)e−γ/RCdγ

Thus, the excess pressure that leads to the minimum excess work is given by

p̂0 =
et/RC

C

∫ t

0
Q0(γ)e−γ/RCdγ −

eT/RC
(
et/RC − 1

)
C
(
eT/RC − 1

) ∫ T

0
Q0(σ)e−σ/RCdσ

We see that the minimising pressure p̂0(t) = f (t; Q0,T ,R,C).

We are now able to evaluate the minimum work that the ventricle can do against the
excess pressure in the aortic root ŵ .

ŵ =

∫ T

0
p̂0Q0dt =

1

C

∫ T

0
Q0e

t/RC
∫ t

0
Q0(γ)e−γ/RCdγdt

−
eT/RC(

eT/RC−1
) ∫ T

0
Q0(γ)e−γ/RCdγ

∫ T

0
Q0(σ)

(
eσ/RC − 1

)
dσ

We now turn to finding the conditions where the minimum excess work ŵ > 0.



nondimensional excess work

Before continuing, it is convenient to define nondimensional variables to help us in
finding the conditions for which ŵ > 0. There are several times in the problem, but it
seems most convenient to scale time with the arterial time constant τ = RC . The flow
rate is most conveniently nondimensionalised by using the stroke volume

Vs =
∫ T

0 Q0dt, which is the volume of blood ejected by the heart during one cardiac

period. Similarly, the work is conveniently scaled by the work V 2
s /C , which is the area

of the P-V loop that would be produced if the stroke volume was ejected
instantaneously, increasing the pressure by the amount Vs/C . With these scalings the
nondimensional variables, denoted by primes are

t′ =
t

RC
, q′ =

RCQ0

Vs
and ŵ ′ =

Cŵ

V 2
S

The nondimensional equation for the minimum excess work is

ŵ ′ =

∫ T ′

0
q(t′)et′

∫ t′

0
q(γ′)e−γ

′
dγ′dt′

−
eT ′

eT ′ − 1

∫ T ′

0
q(γ′)e−γ

′
dγ′

(∫ T ′

0
q(σ′)eσ

′
dσ′ − 1

)
where T ′ = T/RC is the cardiac period measured in units of the arterial time
constant.



physiologically meaningful conditions

It is probably useful to remind ourselves of what we are trying to do at this point of
the analysis. We have found an expression for the minimum excess work ŵ ′ that can
be done for a given ventricular flow rate q′ and given arterial resistance R and
compliance C . We are trying to find the conditions under which ŵ ′ > 0, because
these are the conditions under which the reservoir pressure represents the minimum
work that the ventricle has to do.

If we consider all possible flow rates q′, this analysis becomes so general (and difficult
analytically) that it is difficult to understand the results. It is helpful, therefore, to
consider what types of flow rates are physiologically reasonable.

I We consider only cases where the stroke volume Vs > 0.

I Physiological flow rates involve a period of systole followed by a period of diastole
when q′ = 0.

I For almost all physiological and and clinically relevant cases, the time of systole
TS is short compared to the arterial time constant τ . Therefore,
S ′ = TS/RC < 0.

I Because the heart has to fill before it can eject, the time of diastole is generally
greater or, at least, equal to the time of systole. In nondimensional terms this
means κ = T ′/S ′ ≥ 2.

For these reasons, we will constrain ourselves to these conditions; in particular to the
case S ′ < 1.



general bounds when S ′ � 1

For notational convenience, we temporarily drop the primes from the nondimensional
variables. This should not cause confusion and we will indicate when we return to
dimensional variables.

If S � 1 we can expand the exponential terms as power series in S. The calculations
are quite complex, involving a lot of integration by parts, but are relatively
straightforward. The analysis is most conveniently carried out in terms of the
instantaneous volume displaced from the heart v =

∫ t
0 qdt, whence the volume flow

rate can be written q = v̇ . We also note that v(S) = 1 since we have used the stroke
volume Vs to nondimensionalise Q.
As an illustration of the steps in the analysis, we evaluate the indefinite integral term∫ t

0
q(γ)e−γdγ ≈

∫ t

0
v̇(γ)(1−γ+...) = v−

∫ t

0
v̇(γ)γdγ+... = v−vt+

∫ t

0
v(γ)dγ+...

where the last equation follows from integration by parts.
Using this result, we can evaluate the definite integral∫ S

0
q(t)e−tdt ≈ 1− S + S〈v〉+ ...

where we have used v(S) = 1 and defined the average over systole 〈·〉 = 1
S

∫ S
0 ·dt.



general bounds when S ′ � 1 (2)

Expanding and evaluating all of the terms in the equation for the minimum excess
work, we can collect the terms in ascending powers of S

ŵ ≈
[

1

2
−

1

κ
+
〈v〉
κ

]
+ S

[
1

2
−

(3κ− 4)

2κ
〈v〉+ 〈v2〉 −

〈v〉2

κ
−
∫ S

0 vtdt

κS2

]
+ S2[...]

As already discussed, the ratio of the cardiac period to the time of systole κ = T
TS
≥ 2,

which says that diastole to is at least as long as systole. Similarly, the assumption that
the stroke volume is positive means that the time average volume displacement during
systole, 〈v〉 > 0. If both of these assumptions are true then, to O(S0), ŵ ≥ 0.

Looking at the O(S1) term, we see that things get much more complicated if this
term becomes of the same order as the O(S0) term. The conditions for which ŵ ≥ 0
depend on several other properties of the volume waveform v as well as the ratio κ:
the averages 〈v〉 and 〈v2〉 and the last term which is related to the first moment of v
over S . For any given v , the sign of ŵ can be determined fairly easily, but it is difficult
to make general statements for such a complex relationship.

Nevertheless, for almost all physiologically and clinically interesting cases we expect
S � 1 so that the conclusions based on the zeroth order term are relevant.



conclusions

From the above arguments we conclude:

For all physiologically and clinically relevant cases: ŵ ≥ 0

The corollary to this is:

The reservoir pressure represents the minimum hydraulic work
that the ventricle can do to generate a given flow
for the given arterial resistance and compliance.

The final conclusion follows that:

The excess pressure represents the excess hydraulic work
that the ventricle does over and above the minimum work

needed for the given conditions.
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