
reservoir pressure - 1

The reservoir pressure is calculated using the theory developed by Frank to quantify
the idea of the Windkessel. The arterial system is considered to be a single
compartment of volume V with blood flowing into it from the heart Qin and out of it
through the microcirculation Qout . By the conservation of mass

dV

dt
= Qin − Qout

Assume (i) that the total compliance of the arterial system, C = dV
dP

, is constant and
(ii) that the flow through the microcirculation can be written in terms of a simple

resistive relationship, Qout = P̄−P∞
R

, where R is the effective resistance of the

peripheral circulation, P̄ is the reservoir pressure1 and P̄∞ is the pressure at which
flow through the microcirculation is zero. Note that P∞ is not necessarily the venous
pressure but could be related to the tissue pressure surrounding the microcirculation.

Using these assumptions, mass conservation can be written

dP̄

dt
+

P̄ − P∞

RC
=

Qin

C

1P̄ is referred to in html pages as Pres , mainly because I haven’t found a way to write P̄ in html code.



reservoir pressure - 2

This equation can be solved by multiplying by the integrating factor et/τ , where
τ = RC ,

P̄ − P∞ = (P̄0 − P∞)e−t/τ +
e−t/τ

c

∫ t

0
Qin(t′)et

′/τdt′

where P̄0 is the pressure at t = 0.

During diastole, when the aortic valve is shut Qin = 0 this solution becomes simply

P̄ − P∞ = (P̄0 − P∞)e−t/τ

where we have redefined t = t − Tn where Tn is the time of the start of diastole and
P̄0 is the pressure at that time. When Qin(t) is known, these equations can be used to
calculate the reservoir pressure. First the exponential fall-off during diastole is fitted to
find τ . R is calculated as the ratio of the mean pressure and the cardiac output which,
together with τ , gives C . Finally, the reservoir pressure is found by evaluating the
integral.



estimating the reservoir pressure - 1

Clinically, it is rare to have simultaneous measurements of pressure and flow into the
ascending aorta and so it is desirable to find a way to calculate the reservoir pressure
from the pressure measurement alone. This can be done if two assumptions are valid:

(i) The pressure decay during diastole is uniform throughout the arterial system.

(ii) The arteries are well-matched for forward waves.

The first assumption says that the τ measured at any point in the arteries is the τ for
the reservoir. The second assumption is more subtle, but it implies that the forward
wave generated by the flow into the ascending aorta propagates unchanged by local
reflections into the arterial system. Since the wave pressure is proportional to the flow
in the ascending aorta, this means that the flow will be proportional to the wave
pressure at any point in the arteries. This assumption is probably good in the proximal
arteries but will become less valid as the measurements are made more and more
distally.

Mathematically, the second assumption says that Qin = γ(P − P̄) where γ is some
constant of proportionality. Using this we can write the mass conservation equation

dP̄

dt
= a(P − P̄) − b(P̄ − P∞)

where a = γ/C and b = 1/τ .



estimating the reservoir pressure - 2

This equation can be solved explicitly by multiplying by the integration factor e(a+b)t

P̄ = P0e
−(a+b)t +

bP∞

a + b
(1 − e−(a+b)t) + ae−(a+b)t

∫ t

0
P(t′)e(a+b)t′dt′

As before, b = 1/τ is determined by fitting the pressure measured during diastole to a
decaying exponential. This gives a reservoir pressure at the start of diastole P̄(td )
(determined as the time of the dicrotic notch). Finally, a is determined by fitting the
integral equation at this time

P̄(td ) = P0e
−(a+b)td +

bP∞

a + b
(1 − e−(a+b)td ) + ae−(a+b)td

∫ td

0
P(t′)e(a+b)t′dt′

Using this value of a, the original integral equation can be solved for P̄ throughout the
cardiac cycle.



fitting diastolic pressure to an exponential

In practice, it is sometimes tricky to fit the pressure during diastole with a decaying
exponential of the form

P(t) = ae−bt + c

where a = P0 and c = P∞. The main problem is the determination of P∞ which
involves an extrapolation to infinite time.

The best method we have found involves a modified moments approach. Define the
exponentially weighted moments

En =

∫ T

0
(P− < P >)ent/Tdt

where t = 0 is taken at the start of diastole td and T is the length of diastole. < P >
is the average of P

< P >=
a

bT
(1 − e−bT ) + c

Evaluating the integral, we get the general expression for En

En = aT

[
(1 − ene−bT )

(bT − n)
−

(1 − e−bT )(en − 1)

nbT

]
The ratio of any two moments is a function of only b. Therefore, the ratio of the
exponentially weighted moment of the measured pressure during diastole can be solved
to find b. With this value, any one of the measured moments can be used to determine
a. Finally the measured mean can be used to determine c which is the asymptote.


