Contribution of active hair-bundle motility to nonlinear amplification in the mammalian cochlea

Fumiaki Nin, Tobias Reichenbach, Jonathan A. N. Fisher, and A. J. Hudspeth1

Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY 10065

Contributed by A. J. Hudspeth, November 8, 2012 (sent for review September 25, 2012)

The cochlea’s high sensitivity stems from the active process of outer hair cells, which possess two force-generating mechanisms: active hair-bundle motility elicited by Ca\(^{2+}\) influx and somatic motility mediated by the voltage-sensitive protein prestin. Although interference with prestin has demonstrated a role for somatic motility in the active process, it remains unclear whether hair-bundle motility contributes in vivo. We selectively perturbed the two mechanisms by infusing substances into the endolymph or perilymph of the chinchilla’s cochlea and then used scanning laser interferometry to measure vibrations of the basilar membrane. Blocking somatic motility, damaging the tip links of hair bundles, or depolarizing hair cells eliminated amplification. While reducing amplification to a lesser degree, pharmacological perturbation of active hair-bundle motility diminished or eliminated the nonlinear compression underlying the broad dynamic range associated with normal hearing. The results suggest that active hair-bundle motility plays a significant role in the amplification and compressive nonlinearity of the cochlea.

The sense of hearing excels in several ways. Human hearing spans the enormous frequency range from 20 Hz to 20 kHz, yet we can distinguish frequencies that are only 0.2% apart. This interval is well below a semitone in Western music, which represents about 6% in frequency. Moreover, humans can perceive trillionfold differences in sound intensity, yet the faintest detectable sounds vibrate the tympanic membrane by only 10 pm. These extraordinary features ensue from an active process that provides tuned mechanical amplification of weak signals in the mammalian cochlea. Stimulation with a pure tone elicits a wave of basilar-membrane motion that travels apically and peaks at a frequency-dependent position: high frequencies evoke a maximal response near the cochlear base and progressively lower frequencies at successively more apical positions (1–4). As a traveling wave advances, the active process of outer hair cells continuously adds energy to the vibration to counter the dissipative effect of viscosity (5–7).

The molecular basis of the active process remains unclear. The outer hair cells of mammals exhibit a unique form of mechanical activity: their cell bodies change in length when the membrane potential is altered (8, 9). This somatic motility or electromotility is produced by the membrane protein prestin, which undergoes conformational changes upon alteration of the membrane potential (10). Several experimental studies demonstrate that somatic motility is required for the active process in the cochlea. Transgenic mice in which prestin has been incapacitated or eliminated display severely elevated hearing thresholds (11–14). In wild-type animals, targeted inactivation of prestin over cochlear segments near a traveling wave’s peak dramatically reduces the gain (15).

The mechanoreceptive hair bundles of many vertebrates are also mechanically active. Bundles can oscillate spontaneously in the absence of external forcing and perform mechanical work to amplify inputs; their response is frequency-tuned and compressively nonlinear (16, 17). Although active hair-bundle motility has been studied predominantly in the hair cells of amphibians and reptiles (18, 19), in vitro studies demonstrate that it contributes to the active process of the mammalian cochlea as well (20–23). It has not heretofore been possible, however, to investigate the role of mammalian hair-bundle activity in vivo. Because mechanotransduction is required to elicit somatic motility, interfering with a hair bundle’s operation usually affects somatic motility as well. It is accordingly difficult to isolate the contribution of active hair-bundle motility to the mammalian active process. To overcome this problem, we have developed an in vivo preparation of the chinchilla’s cochlea that allows us to record sound-induced waves on the basilar membrane with a scanning laser interferometer. We have then studied the effects of pharmacological agents that interfere with hair-bundle activity while leaving mechanotransduction and somatic motility intact.

Results

Velocity and Sensitivity of the Traveling Wave Under Control and Anoxic Conditions. By directing the beam of a scanning laser interferometer through a 0.5 mm window in the bony wall of the chinchilla’s cochlea slightly apical to the round window, we measured the vibration velocity of the basilar membrane (Fig. 1A). For any particular sound pressure, the velocity under control conditions exceeded that after anoxia (Fig. 1B). Moreover, the traveling wave peaked more apically under control conditions than after anoxia. The extent of compressive nonlinearity was especially apparent in graphs of the sensitivity, which was calculated as the ratio of the velocity to the stimulus level (Fig. 1C). Low-level stimulation of a control cochlea evoked a narrow traveling-wave peak with a maximal sensitivity exceeding 10 mm s\(^{-1}\) Pa\(^{-1}\), whereas the sensitivity after anoxia was at least an order of magnitude lower, typically 0.2 mm s\(^{-1}\) Pa\(^{-1}\), and nearly independent of the stimulus level. All these characteristics are indicative of a robust cochlear active process with a gain of 50x or more.

Effect of Blocking Somatic Motility and Damaging Tip Links. We first conducted control experiments meant to confirm the effects of interference with somatic motility and mechanoelectrical transduction. While measuring traveling waves in vivo, we exposed the cochlea to salicylate, which interacts with prestin and reduces somatic motility in outer hair cells (24) without any known effect on active hair-bundle motility. Fifteen minutes after the application of 3 mM salicylate to the perilymph, the sensitivity of the traveling wave decreased to the level characteristic of anoxia (Fig. 2A). This result was confirmed in three additional experiments. Similar effects have been observed previously after salicylate treatment or genetic perturbation of prestin (12, 14, 25).

We next iontophoresed into the endolymph the Ca\(^{2+}\) chela tor 1,2-bis(2-aminophenoxo)ethane-N,N,N’,N’-tetraacetic acid (BAPTA) to rapidly and reversibly eliminate active motility. BAPTA induced a nearly complete loss of the traveling wave, which appeared only partially after washout of the BAPTA-iontophoresate (Fig. 2B). The cochlea was studied both under control conditions and after anoxia. Under control conditions, the BAPTA iontophoresate decreased the traveling-wave velocity to the level characteristic of anoxia (Fig. 2C). A persistent effect of BAPTA iontophoresate was a change in the ratio of the velocity to the stimulus level (Fig. 2D). Low-level stimulation of a control cochlea evoked a narrow traveling-wave peak with a maximal sensitivity exceeding 10 mm s\(^{-1}\) Pa\(^{-1}\), whereas the sensitivity after anoxia was at least an order of magnitude lower, typically 0.2 mm s\(^{-1}\) Pa\(^{-1}\), and nearly independent of the stimulus level. All these characteristics are indicative of a robust cochlear active process with a gain of 50x or more.

The authors declare no conflict of interest.

Freely available online through the PNAS open access option.

1To whom correspondence should be addressed. E-mail: hudspaj@rockefeller.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1219379110/-DCISupplemental.
Effect of Perturbing Active Hair-Bundle Motility. Although no specific blocker of active hair-bundle motility is known, several substances have been demonstrated to affect this process in vitro. Calcium ion has a pronounced effect on hair-bundle oscillations: increasing the Ca\(^{2+}\) concentration progressively accelerates bundle oscillations and lowers their magnitude (27). Rp-adenosine 3′,5′-cyclic monophosphorothioate (Rp-cAMPS), which is an inhibitor of cAMP-dependent protein kinase and thus of protein phosphorylation in hair cells, reduces the frequency of spontaneous oscillation in vitro (27). In contrast, Sp-adenosine 3′,5′-cyclic monophosphorothioate (Sp-cAMPS), an activator of the same enzyme, increases the oscillation frequency; a related substance, 8-bromoadenosine 3′,5′-cyclic monophosphate (8-Br-cAMP), shifts the hair bundle’s displacement–response relation (28). Use of these compounds therefore permits manipulation of hair-bundle motility without damaging the mechanotransduction apparatus or directly affecting somatic motility.

In a total of four experiments, iontophoretic application of Ca\(^{2+}\) to the endolymph substantially decreased the traveling (BAPTA), which breaks tip links by lowering the Ca\(^{2+}\) concentration (26). As the chelator diffused to the hair bundles over a period of 60 min, the basilar membrane’s sensitivity in each of three experiments declined to the level characteristic of anoxia (Fig. 2B).

High-K\(^{+}\) solution depolarizes hair cells, thereby decreasing the mechanoelectrical-transduction current, which depends on the difference between the endocochlear potential and the membrane potential of hair cells. Depolarization also impairs voltage-driven somatic motility. An elevated K\(^{+}\) concentration should therefore disable both components of the active process and eliminate amplification. Within 15 min of its introduction into the perilymph, 150 mM KCl reduced the sensitivity in each of three preparations to the value after anoxia (Fig. 2C).

After each of these three control perturbations, the peak of the traveling wave shifted basally as observed under anoxia (Fig. 2A–C). These results together indicate that blocking either mechanoelectrical transduction or electromotility has the same effect as nonspecifically disrupting both components of the active process.

Fig. 1. Characteristics of the traveling wave on the chinchilla’s basilar membrane. (A) Schematic illustrations depict the cochlear traveling wave under control conditions (Upper) and after anoxia (Lower). In each diagram the black line shows the instantaneous position of the traveling wave on the basilar membrane and the shaded area represents the envelope through a complete cycle of oscillation. (B) Interferometric measurements indicate the velocities of basilar-membrane oscillation in response to pure-tone stimulation at 9 kHz. The convergence of the curves toward their peaks indicates that the traveling waves under control conditions (Upper) are compressive at stimulus levels exceeding 40 dB SPL. In contrast, the velocities measured after anoxia (Lower) scale linearly with sound pressure and the peaks are shifted basally. The results are plotted in 10 dB decrements in stimulation from 90 dB to 40 dB SPL. In this and subsequent illustrations, levels are arranged in a chromatic sequence and the cochlear base lies to the left. (C) Dividing the velocities by the stimulus pressures yields sensitivity measurements. Because the active process is most effective during weak stimulation, the sensitivities are greatest at low SPLs (Upper). In the absence of the active process, the sensitivity curves of an anoxic preparation are superimposed (Lower). In this and subsequent illustrations, pale red shading indicates the entire range of sensitivities under control conditions and pale gray shading shows that after anoxia.

Fig. 2. Effects of interference with active hair-bundle motility and somatic motility. The responses to SPLs from 90 dB to 40 dB are arranged in a chromatic sequence; pale blue shading highlights the range of sensitivities after treatment. (A) After 15 min of perfusion into the perilymph of the scala tympani, 3 mM salicylate reduced the sensitivity to the level characteristic of anoxia. (B) Following 60 min of endolymphatic iontophoresis, BAPTA likewise lowered sensitivity to the anoxic level. (C) Perilymphatic perfusion of 150 mM KCl, which affects both active hair-bundle motility and somatic motility, reduced the sensitivity to that after anoxia. The peaks of the traveling waves in A–C, which are indicated in each panel by arrowheads, shifted basally after each treatment to resemble those after anoxia. (D) Endolymphatic iontophoresis of Ca\(^{2+}\) moderately reduced the traveling wave’s sensitivity and narrowed its range. (E) Rp-cAMPS, which interferes with the activation of protein kinase A, reduced the sensitivity of basilar-membrane oscillation. (F) 8-Br-cAMP, a lipid-soluble analog of cAMP that promotes protein phosphorylation, also diminished the sensitivity. In D–F the peaks of the traveling waves moved basally to a lesser extent and broadened less than during anoxia. Note the different abscissa scales, which reflect the sizes of the apertures through which the interferometric measurements were made.
wave’s sensitivity (Fig. 2D). A treated cochlea displayed greater sensitivity than an anoxic one, but its response was distinctly more linear than that of a control preparation.

Rp-cAMPS and 8-Br-cAMP had similar effects on the traveling wave; after exposure to either substance, the sensitivity fell to about one-fifth the control value but remained fivefold that for anoxia (Fig. 2 E and F). This result was observed four times for each substance. The traveling wave’s peak shifted basally and the wave broadened in both instances. To confirm that the drugs did not interfere with prestin on the basolateral surfaces of the hair cells or with other cells in the organ of Corti, we also infused these substances into the perilymph; both treatments were without significant effect (Fig. S1).

In a linear system, the phase of the traveling wave and the location of its peak are independent of the sound pressure. We observed this behavior after anoxia, blocking somatic motility, or breaking tip links (Fig. 2A–C). Under control conditions, however, the phase and peak location showed a clear level dependence indicative of nonlinearity. The level dependence of both the phase and the peak position persisted after treatment with Ca2+, Rp-cAMPS, or 8-Br-cAMP, confirming that some nonlinearity remained (Fig. 2D–F; Fig. S2).

By relating basilar-membrane sensitivity to the level of stimulation, level functions provide a convenient summary of the foregoing results (Fig. 3). Under control conditions, the sensitivity displayed compressive nonlinearity for stimuli exceeding 60 dB SPL. After anoxia, in contrast, the sensitivity declined and depended linearly on the strength of stimulation. The separation between the data for these two conditions reflects the gain of the active process at each stimulus level. Both amplification and compressive nonlinearity disappeared when we blocked somatic motility, active hair-bundle motility, or both (Fig. 3 A–C). The application of Ca2+, Rp-cAMPS, or 8-Br-cAMP produced distinct effects: although these treatments dramatically reduced compressive nonlinearity, a substantial amount of amplification persisted in each instance (Fig. 3 D–F).

Discussion

Near the peak of a traveling wave, the active process of a healthy cochlea strongly amplifies weak inputs but provides progressively less enhancement of stronger signals. This level-dependent amplification underlies the cochlea’s signature compressive nonlinearity. Here we have shown that perturbing active hair-bundle motility linearizes the basilar membrane’s response to sound but spares significant amplification. How can this behavior be understood?

Dynamical systems theory provides useful insight into the results. In this mathematical framework, the cochlea’s nonlinear responsiveness signifies operation near a bifurcation; the association of frequency tuning with amplification suggests the involvement of a supercritical Hopf bifurcation in particular (29–34). Consider a system that is stimulated by a sinusoidal pressure of amplitude p at an angular frequency ω. Assume that the pressure acts on a segment of the basilar membrane of area A to produce a force Ap. The normal form of a Hopf bifurcation with forcing captures the essential features of the system’s temporal evolution:

$$\lambda \frac{dz}{dt} = (a + i\omega)z - b|z|^2z + Ap\cos(\omega t),$$

in which λ is a friction coefficient and ω_0 is the system’s resonant frequency. The parameter a represents the real component of the system’s linear response, which reflects viscous damping and

Fig. 3. Analysis of amplification and nonlinear compression. Level functions relate the sensitivity of traveling-wave responses at a particular location on the basilar membrane to the strength of stimulation. The control data (red) in each panel demonstrate linear behavior for stimuli below 50–60 dB SPL and compressive nonlinearity at higher levels. The responses after anoxia (black) reveal the behavior of the passive cochlea. The difference between the two sets of curves represents the gain at each level of stimulation, with values up to 100× for weak stimuli. (A) Perilymphatic perfusion of 3 mM salicylate for 15 min lowered the sensitivity to the level encountered after anoxia. The blue data in this and subsequent panels represent the responses after treatment. (B) BAPTA iontophoresed into the endolymph eliminated mechanoelectrical transduction and rendered the cochlea passive. (C) A high K^+ concentration in the perilymph depolarized hair cells, perturbing both active hair-bundle motility and somatic motility, and lowered the sensitivity to the value after anoxia. (D) Raising the endolymphatic Ca^{2+} concentration by iontophoresis, a procedure meant to partly block transduction channels, desensitized the traveling wave and rendered its behavior linear. A gain of about 10× nonetheless persisted. (E) Rp-cAMPS reduced the cochlear gain to a similar extent but spared some nonlinearity; (F) 8-Br-cAMP also reduced both the gain and nonlinearity.
measures the distance from the Hopf bifurcation, which occurs at the critical value $a = 0$. We consider only positive values of a, for which the system is quiescent in the absence of external stimulation. The parameter b controls the nonlinearity; its real part is positive for a supercritical Hopf bifurcation. As a simplification, we assume that b is real.

Acoustic stimulation oscillates the basilar membrane at the same frequency, evoking a displacement of complex amplitude $\hat{X}_z = \hat{x}_0 \exp(i \omega t)$. When the stimulus frequency ω equals the system’s resonant frequency ω_0, the response satisfies the relation:

$$A p = -a \hat{X} + b |\hat{X}|^2 \hat{X}.$$ \[2\]

Two distinct regimes emerge for the system’s sensitivity. For pressures smaller than a crossover value $p_ s = A^{-1/2} a b^{-3/2}$, the resulting displacement grows linearly with the stimulus, $\hat{X} = -A p / a$. The sensitivity S, the ratio of the velocity to the sound pressure, is therefore constant at $S = \omega A / a$ (Fig. 4A). In contrast, larger pressures $p > p_ s$ produce a nonlinear displacement, $\hat{X} = (A p / b)^{1/3}$, the sensitivity is then nonlinear as well: $S = \omega A^{1/3} b^{-1/3} p^{-2/3}$. Note in particular that the sensitivity declines with increasing sound pressure with a slope in logarithmic coordinates of $-2/3$ (Fig. 4A). The crossover pressure $p_ s$ monotonically increases with larger values of a; deviating from the Hopf bifurcation accordingly broadens the regime of linear responsiveness. For a system at the Hopf bifurcation, $a = 0$, the crossover pressure $p_ s$ vanishes and the system’s response becomes entirely nonlinear.

This generic behavior can explain our experimental findings. Using realistic values for the parameters a and b, we find that the sensitivity is nonlinear except at low sound pressures (Fig. 4B), as observed for the interferometric data under control conditions. The damping parameter a has a small value because forces from outer hair cells counter the hydrodynamic drag that impedes the cochlear partition’s movement and position the partition close to a Hopf bifurcation. When the parameter a is increased fivefold, the linear component of the system’s response becomes more prominent; the sensitivity accordingly remains linear up to almost 80 dB SPL and is reduced except at high sound pressures (Fig. 4B). The resulting curve resembles those that we have observed experimentally (Fig. 3 E and F). Perturbing active hair-bundle motility presumably has the effect of reducing the gain from outer hair cells and positioning the cochlear partition farther from the Hopf bifurcation. An additional tenfold increase in a, which represents a greater deviation from the Hopf bifurcation, further reduces and diminishes the sensitivity as observed in a passive, anoxic cochlea (Fig. 4B).

Perturbing active hair-bundle motility may also alter the nonlinearity and hence the coefficient b in Eq. 1. The nonlinearity in the response of the cochlear partition presumably results from the nonlinear opening probability of the bundle’s mechanotransduction channels, which in turn is controlled by active adaptation mechanisms (27). Interfering with the channels’ behavior should therefore affect the nonlinearity. The discussion below Eq. 2 informs us that, near a Hopf bifurcation, a reduction of the parameter b does not alter the system’s sensitivity to weak stimuli. The crossover pressure $p_ s$ above which the system’s response becomes nonlinear shifts to higher values, however, so that at high sound pressures the perturbed system exhibits a larger response than the control (Fig. 4B). We have observed similar behavior in our experiments (Fig. 3D and Fig. S3).

Our results reveal that active hair-bundle motility is required for the full range of cochlear amplification and compressive nonlinearity. Disturbing hair-bundle motility yields a linearized response that can be understood through a phenomenological model. Each segment of a healthy cochlear partition presumably operates close to a Hopf bifurcation that yields amplification, frequency tuning, and compressive nonlinearity. Pharmacological perturbation results in deviation from the Hopf bifurcation; the system then exhibits a smaller and more linear response at low sound pressures but retains amplification and nonlinearity for strong stimulation.

Exactly how active hair-bundle motility interacts with somatic motility to implement the cochlear active process remains uncertain. Although modeling has proposed ways in which the two mechanisms can efficiently drive the cochlear partition (35–37), the theoretical approach is limited by the precision to which movements of the ear’s many interacting structures have been measured. Moreover, the contributions of the two motile activities may change along the cochlea, for the mechanics at the cochlear apex differs from that at the base (3, 4, 36). Understanding the interplay between active hair-bundle motility and somatic motility may require measurement of the complex motions within the active organ of Corti, perhaps in simplified preparations in vitro (22, 23) or by optical coherence tomography in vivo (38, 39).

Methods

Experimental Procedures. The study used 59 healthy male chinchillas (Chinchilla lanigera) with masses of 0.3–0.5 kg. The techniques of anesthesia, surgery, acoustic stimulation, and interferometric recording have been described (15). All procedures were approved by the Institutional Animal Care and Use Committee of The Rockefeller University.

Perilymphatic and Endolymphatic Perfusion. Solutions were perfused into the perilymph through the tip of a 30-gauge needle placed just above the cochlear fenestra used for interferometric recording. The artificial perilymph consisted of 137 mM NaCl, 5 mM KCl, 12 mM NaHCO3, 2 mM CaCl2, 1 mM MgCl2, 1 mM Na2HPO4, and 11 mM D-glucose. Perilymph containing either 3 mM salicylate or 150 mM KCl was added at a rate of 0.5 mL/min for 1 min. Solutions were iontophoretically injected into the endolymph through a small hole, 10 μm in diameter, drilled into the otic capsule. We then inserted a glass microelectrode containing the solution to be assayed (Fig. 4A and B). To confirm that the electrode’s tip was in the scala media,
we recorded the endocochlear potential with an amplifier (EXT-Q2F, NPI) (Fig. 54C). While monitoring the endocochlear potential, we iontophoretically infused Ca\(^{2+}\), BAPTA, Ba\(^{2+}\)-CAMP, or Rp-CAMPS into the endolymph by passing 20 \(\mu\)A of current in 500 ms pulses at 1 s intervals for 3–10 min with a stimulator (A320, World Precision Instruments) (40). Neither inserting an electrode nor injecting current into the scala media affected a traveling wave’s sensitivity and phase. Even after 10 min of application of a current of 20 \(\mu\)A, traveling waves largely maintained their original gain for the subsequent 30 min (Fig. 55). Infusion of Ca\(^{2+}\), Ba\(^{2+}\)-CAMP, or Rp-CAMPS for 10 min exerted a stronger effect, but the gain of the traveling wave persisted after iontophoresis (Fig. 56).

We measured active traveling waves in approximately half of the preparations. The low success rate stemmed in part from the invasiveness of the surgical procedure, which often decreased an animal’s hearing sensitivity (41). In addition, drilling a hole into the otic capsule for endolymphatic perfusion sometimes injured the tissue of the lateral cochlear wall and thus reduced the endocochlear potential. Of 32 sensitive cochleae, the traveling waves of 23 exhibited compressive nonlinearity that persisted throughout an experiment; from these, 20 were selected for experiments and three for control measurements.

Estimation of Parameter Values in the Model. A Hopf bifurcation can arise in a simple model of the cochlear partition involving mass, damping, and stiffness (34). In the following we estimate the coefficients \(a\) of the linear term and \(b\) of the nonlinear term in the normal form of the Hopf bifurcation (Eq. 1) for a particular position along the partition. The analysis refers to a transverse strip of the basilar membrane whose width is 8 \(\mu\)m, that of one hair cell, and whose length is 200 \(\mu\)m, the approximate radial dimension of the basilar membrane.

\[
P(X) = \frac{1}{1 + e^{-X/C_{0}}}^{3}
\]

with a characteristic length \(X_0 = 10\) nm somewhat smaller than the experimentally measured value (20, 21). According to the gating-spring model of hair-bundle mechanics (21, 42), the opening and closing of mechanotransduction channels is associated with a force \(cP(X)\) that is proportional to the open probability with a coefficient \(c = 1\) nN. For small displacements around a resting value \(X_0 = 0\), the leading nonlinearity of the gating force is cubic and reads \((1 + cP(X))^{3/2}X^3\). The coefficient \(b\) in Eq. 1 may accordingly be estimated as

\[
b = \frac{1}{1 + cP(X)}^{3/2}X^3.
\]

ACKNOWLEDGMENTS. We thank B. Fabella for computer programming and the members of our research group for their critical reading of the text. P.N. was supported by a Postdoctoral Fellowship for Research Abroad from the Japan Society for the Promotion of Science, T.R. by a Career Award at the Scientific Interface from the Burroughs Wellcome Fund, and J.A.N.F. by a Bristol-Myers Squibb Postdoctoral Fellowship in Basic Neurosciences and a research grant from the American Hearing Research Foundation. A.J.H. is an investigator of Howard Hughes Medical Institute.

Fig. S1. Effect of perilymphatic perfusion of Rp-cAMPS and 8-Br-cAMP. Substances injected into the scala media diffuse throughout the endolymph and reach the apical surfaces of hair cells. It is possible, however, that the drugs affect other cells in the organ of Corti or penetrate through the reticular lamina to affect other aspects of hair-cell physiology such as prestin-mediated electromotility. (A) As a control, we perfused the scala tympani with 5 mM Rp-cAMPS and measured the sensitivity and phase of vibrations along the basilar membrane. Traveling waves retained nonlinear amplification for at least 30 min, during which the phases of the traveling waves displayed level-dependent variations indicative of nonlinearity. As was the case for control preparations, the nonlinearity began to decrease by 60 min. Stimuli from 40 dB to 90 dB SPL are denoted in the chromatic color scale used in the main text. (B) The perilymphatic infusion of 1 mM 8-Br-cAMP was also without significant effect. To control for the continual replenishment of the perilymph, we reapplied the drugs to the perilymph after 30 min and again observed no major change.
Fig. S2. Effects of interference with active hair-bundle and somatic motility on the phase of the traveling wave. (A) Under control conditions the phase showed a clear level dependence indicative of nonlinearity. Iontophoretic application of Ca²⁺ into the endolymph had little effect on this phenomenon. In a linear system, which resulted after anoxia (gray lines), the phase of the traveling wave was also independent of the sound pressure. (B) Endolymphatic Rp-cAMPS also spared the level dependence of traveling-wave phase. (C) The effect of endolymphatic 8-Br-cAMP was similar. The ordinate scales in the three experiments differ as a result of distinct characteristic frequencies at the measurement sites, respectively 9.4 kHz, 8.6 kHz, and 9.4 kHz.

Fig. S3. Time dependence of drug perfusion. The sensitivity of basilar-membrane movement as a function of stimulus level was measured at varying times after perfusion. The sensitivity recovered somewhat after perilymphatic perfusion of salicylate or K⁺ and after endolymphatic iontophoresis of Ca²⁺. The sensitivity gradually declined after the other procedures.
Fig. S4. Experimental configuration. (A) To expose the basilar membrane, we drilled a hole in the lateral wall of the basal turn of the chinchilla’s cochlea 1–2 mm apical to the round window. Measurements of basilar-membrane movement were made with a heterodyne laser interferometer. For endolymphatic perfusion, a glass microelectrode was inserted into another hole on the lateral wall in the same turn of the cochlea. (B) To record the endocochlear potential, we advanced the microelectrode through the lateral cochlear wall into the scala media. (C) A recording shows an abrupt appearance of the endocochlear potential of 80 mV as the microelectrode’s tip entered the scala media. The potential remained stable during 3 min of iontophoresis and then returned to the baseline level upon withdrawal of the electrode.
Fig. S5. Effect of electrode insertion and electrical current on the traveling wave. The sensitivity and phase of traveling waves were measured under control conditions, after insertion of a glass microelectrode into the scala media, and after the injection of a current of 20 μA for 3 min. None of these procedures significantly perturbed the traveling waves during the subsequent 30 min. The response grew more linear by 60 min and became passive after anoxia.

Fig. S6. Effect of prolonged infusion of Ca2+, Rp-cAMPS, or 8-Br-cAMP into the scala media. Over the course of 3 min the iontophoretic current of 20 μA transferred ~1.8 mC into the scala media, whose volume is roughly 3.6 μL (1). If the ion or drug diffused throughout the endolymph, the Ca2+, Rp-cAMPS, or 8-Br-cAMP concentration reached respectively 2.5 mM, 5 mM, or 5 mM. The frequency and magnitude of spontaneous hair-bundle oscillations in the bullfrog’s sacculus are altered in vitro by 250 μM Ca2+, 500 μM Rp-cAMPS, or 100 μM 8-Br-cAMP, an analog of Sp-cAMPS (2). The amounts of drug injected should therefore have been more than sufficient to elicit maximal responses. To determine the effects of still higher concentrations, we iontophoresed each substance for a total of 10 min. (A) An increased Ca2+ concentration elicited a stronger response, but some gain persisted after iontophoresis. (B) Prolonged injection of Rp-cAMPS had little effect. (C) The effect of a higher 8-Br-cAMP concentration was negligible.