Welcome to the Universality in Biology Group website. We are based in the Department of Bioengineering at Imperial College London. We employ tools of statistical mechanics, soft condensed matter physics, applied mathematics, and computation methods to study universal behaviour in biological systems. Specific examples include protein amyloid self-assembly, cytoplasmic pattern formation, tissue homeostasis, and collective behaviour in living organisms. Our work is typically performed in close collaboration with experimental biologists.

Recent conference organisation

Organiser of the Fluids Summer School 2018: 'Current topics in active fluids: Theory and Experiments' held at Imperial College London on July 16-20, 2018 [Poster]
[Lecture notes on fluctuating hydrodynamics of passive and active fluids]

Co-organiser of Field theories come to Life held at Imperial College London on April 9, 2018

Organiser of the CoSyDy meeting on 'Non-equilibrium polymer dynamics' held at Imperial College London on 26 June, 2017

Recent reviews
C.A. Weber, D. Zwicker, F. Jülicher and C.F. Lee
Physics of Active Emulsions. To appear at Reports of Progress in Physics. E-print: arXiv:1806.09552
C.F. Lee and J.D. Wurtz (2019)
Novel physics arising from phase transitions in biology. Journal of Physics D: Applied Physics 52, 023001. E-print: arXiv:1809.11117.
Featured in the Thesis section at Nature Physics.
L. Hong, C.F. Lee and Y.J. Huang (2017)
Statistical Mechanics and Kinetics of Amyloid Fibrillation. Biophysics and biochemistry of protein aggregation, edited by J.-M. Yuan and H.-X. Zhou (World Scientific), chapter 4; E-print: arxiv:1609.01569.

Selected recent papers
A. Cairoli and C.F. Lee
Hydrodynamics of Active Lévy Matter. E-print: arXiv:1903.07565
P. Sartori and C.F. Lee
Scaling behaviour of non-equilibrium planar N-atic spin systems under weak fluctuations.
D. Nesbitt, G. Pruessner and C.F. Lee
Uncovering novel phase transitions in dense dry polar active fluids using a lattice Boltzmann method. E-print: arXiv:1902.00530
B. Partridge and C.F. Lee
Critical motility-induced phase separation belongs to the Ising universality class. E-print: arXiv:1810.06112
C.F. Lee (2018)
Equilibrium kinetics of self-assembling, semi-flexible polymers. Journal of Physics: Condensed Matter 30 315102. E-print:
J.D. Wurtz and C.F. Lee (2018)
Stress granule formation via ATP depletion-triggered phase separation. New Journal of Physics 20 045008. E-print: arXiv:1708.05697
J.D. Wurtz and C.F. Lee (2018)
Chemical reaction-controlled phase separated drops: Formation, size selection, and coarsening. Physical Review Letters 120, 078102. E-print:
C.F. Lee (2017)
Interface stability, interface fluctuations, and the Gibbs-Thomson relation in motility-induced phase separations. Soft Matter 13, 376-385. E-print: arxiv:1503.08674.
L. Chen, C.F. Lee and J. Toner (2016)
Surprising mappings of 2D polar active fluids to 2D soap and 1D sandblasting. Nature Communications 7, 12215.
E-print: arxiv:1601.01924.

L. Chen, J. Toner and C.F. Lee (2015)
Critical Phenomenon of the Order-Disorder Transition in Incompressible Active Fluids. New Journal of Physics 17, 042002 (Fast Track Communication) [Video abstract].
E-print: arxiv:1410.2764.