Welcome to the Universalities in Biology Group website. We are based in the Department of Bioengineering at Imperial College London. We employ tools of statistical mechanics, soft condensed matter physics, applied mathematics, and computation methods to study universal behaviour in biological systems. Specific examples include protein amyloid self-assembly, cytoplasmic pattern formation, tissue homeostasis, and collective behaviour in living organisms. Our work is typically performed in close collaboration with experimental biologists.



Conference activities

Co-organiser of the Fluids Summer School 2016: 'Interscale interactions in fluid mechanics and beyond' held at Imperial College London on July 11-15, 2016.

Co-organiser of the CoSyDy meeting on 'Foundations of Statistical Mechanics' held at Imperial College London on 18 December, 2015.

Organiser of the CoSyDy meeting on 'Phase Transitions and Scale Invariance in Biology' held at Imperial College London on 28 September, 2015.

Organiser of the IOP conference: Physics of Emergent Behaviour II: from Molecules to Planets held at the Science Museum (London) on 9-10 July, 2015.

Co-chair of the Biomaterials Session at the MEC Annual Meeting and Bioengineering14 held at Imperial College London on 10-11 September, 2014.

Organiser of the CoSyDy meeting on the 'Dynamics of Active Matter' held at Imperial College London on 7 May, 2014.



Selected recent papers
L. Hong, C.F. Lee and Y.J. Huang (2016)
Statistical Mechanics and Kinetics of Amyloid Fibrillation. To appear in Biophysics and biochemistry of protein aggregation, edited by J.-M. Yuan and H.-X. Zhou (World Scientific). E-print: arxiv:1609.01569.
C.A. Weber, C.F. Lee and F. Jülicher (2016)
Droplet Ripening in Concentration Gradients. Submitted. 
L. Jean, C.F. Lee, P. Hodder, N. Hawkins and D.J. Vaux (2016)
Dynamics of the formation of a hydrogel by a pathogenic amyloid peptide: islet amyloid polypeptide. Scientific Reports
6, 32124.
L. Chen, C.F. Lee and J. Toner (2016)
Surprising mappings of 2D polar active fluids to 2D soap and 1D sandblasting. Nature Communications 7, 12215.
E-print: arxiv:1601.01924.

G. Pruessner and C.F. Lee (2016)
Comment on "Anomalous Discontinuity at the Percolation Critical Point of Active Gels." Physical Review Letters 116, 189801.
E-print: arxiv:1605.02855.
C.F. Lee and G. Pruessner (2016) [Editors' Suggestion]
Percolation with trapping mechanism drives active gels to the critically connected state.
Physical Review E 93, 052414. E-print: arxiv:1508.06771.
C.F. Lee
Interface stability, interface fluctuations, and the Gibbs-Thomson relation in motility-induced phase separations. E-print: arxiv:1503.08674.

L. Chen, J. Toner and C.F. Lee (2015)
Critical Phenomenon of the Order-Disorder Transition in Incompressible Active Fluids. New Journal of Physics 17, 042002 (Fast Track Communication) [Video abstract].
E-print: arxiv:1410.2764.
P. Sartori, L. Granger, C.F. Lee and J.M. Horowitz (2014)
Thermodynamic costs of information processing in sensory adaptation.
PLOS Computational Biology 10, e1003974. E-print: arxiv:1404.1027.
C.F. Lee, C.P. Brangwynne, J. Gharakhani, A.A. Hyman and F. Jülicher (2013)
Spatial organization of the cell cytoplasm by position dependent phase separation.
Physical Review Letters 111, 088101.